Efficient and Sustainable Facility Design

Professional Development Webinar

Sustainable Labs Canada

February 18, 2015

More than ever before, science based organizations and institutions are pursuing major facility upgrades with a key focus on sustainability and energy efficiency. There are many evolving reference points and guidance tools to assist project teams in the pursuit of these goals.

This presentation will benefit attendees by providing a guide to the sustainable rating systems applicable to new laboratory construction. It will also describe a holistic approach to sustainability which goes beyond any one rating system. Together, we will consider a systematic approach to the use of basic payback analysis and life cycle cost analysis. The presentation will outline the new technologies available to model the performance of engineering systems, and will use past project examples to illustrate passive and active approaches to overall building energy performance. Lastly, the presentation will give an overview of special products and technologies that can improve the performance of science facilities, laboratories and pharmaceutical production facilities.

Abstract

- sustainable rating systems applicable to new laboratory construction
- 2. holistic approach to sustainability
- 3. basic payback analysis and life cycle cost analysis
- technologies available to model the performance of engineering systems
- 5 approaches to overall building energy performance
- products, concepts and technologies to improve your laboratory performance

49 LEED

Α

Leadership in Energy & Environmental Design

There are five rating systems that address multiple project types:

LEED

Leadership in Energy & Environmental Design

Integrative Process requirements, while not a credit category, promote reaching across disciplines to incorporate diverse team members during the predesign period.

Location and transportation credits reward projects within relatively dense areas, near diverse uses, with access to a variety of transportation options, or on sites with development constraints. Materials and Resources credits encourage using sustainable building materials and reducing waste. Indoor environmental quality credits promote better indoor air quality and access to daylight and views.

Energy and atmosphere

 Water efficiency
 Energy and atmosphere

 credits promote smarter use of water, inside and out, to reduce potable water
 credits promote better building energy performance through innovative strategies.

consumption.

Indoor environmental quality credits promote better indoor air quality and access to daylight and views.

Innovation credits address sustainable building expertise as well as design measures not covered under the five LEED credit categories.

Sustainable sites credits encourage strategies that minimize the impact on ecosystems and water resources.

Regional priority credits address regional environmental priorities for buildings in different geographic regions.

Labs 21 (Our Friends) Labs for the 21st Century

Co-sponsored by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), Labs 21 is now transitioning to oversight by the International Institute for Sustainable Laboratories (I2SL).

The Labs21 Environmental Performance Criteria (EPC) complements the U.S. Green Building Council's widely used Leadership in Energy and Environmental Design for New Construction (LEED-NC) rating system, extending it to set appropriate and specific requirements for laboratories.

Core information resources:

- A Design Guide for Energy-Efficient Research Laboratories
- Best Practice Guides
- Technical Bulletins
- Case Studies
- Energy Benchmarking
- Laboratory Energy Efficiency Profiler (LEEP) Tool
- Energy-Efficient Laboratory Equipment Wiki
- Climate Neutral Research Campuses
 Website

Design process tools:

- Environmental Performance Criteria
- Labs21 Design Process Manual

Labs21

Labs for the 21st Century

At-a-glance comparison of the LEED versus EPC rating systems

LEED	Labs21 EPC
Criteria available for multiple building types	Specifically designed for laboratory facilities
Created to be used on its own	Created to work in conjunction with the LEED rating system
Provides certification	Does not provide certification
Produced by USGBC	Produced by a series of working groups that included more than 40 architects, engineers, facility managers, and health and safety professionals organized by Labs21

Green Globes

The genesis of Green Globes, similar to LEED and many other systems around the world was BREEAM, developed in the UK in the 1980's. Based on the 1996 CSA publication of BREEAM Canada, Green Globes for Existing Buildings was developed in 2000 as the first online system.

Green Globes for New Buildings Canada followed shortly thereafter, with the support of the Canadian Department of National Defense and Public Works and Government Services. In 2004, the system was adapted for the USA, where it is administered by the GBI (The Green Building Initiative), a standards developer through the American National Standards Institute (ANSI).

Core information resources:

- Rating System
- Program Summary
- Energy Modeling Expertise
- Plaques
- Water Calculator
- Performance Benchmarking Samples
- Case Studies

	Green Globes	LEED
Uses ANSI approved consensus development process	Yes	No
Nationally accepted program	Yes	Yes
Program delivery	Online interactive questionnaires	Online submission of templates
Total program points	1,000	110
Partial credits and recognizes that some criteria may be not applicable	Yes	Limited
Pre-requisites	No	Yes
Uses life cycle assessment and multiple attribute evaluations	Yes	No
Forest certifications accepted	FSC, SFI, ATFS, CSA	FSC
Time to complete documentation	©	0000
Cost to certify a typical building	\$	\$\$\$\$

Living Building Challenge

INTERNATIONAL LIVING BUILDING INSTITUTE

LIVING BUILDING CHALLENGESM 3.0

A Visionary Path to a Regenerative Future

Living Building Challenge

LIVING BUILDING CHALLENGE^{**}

Projects can achieve three types of certification:

- Living Building Certification
- Petal Recognition
- Net Zero Energy Building Certification

The Living Building Challenge project certification process for projects pursuing Full Certification or Petal Recognition is intentionally straightforward, while still fostering an environment of support and collaboration. A project's path from inspired vision to inspirational achievement consists of three steps: Registration, Documentation + Operation and Audit + Certification.

The Net Zero Energy Building Certification follows a slightly different process.

How can we move toward a holistic approach to sustainability which goes beyond any one rating system?

Holistic Sustainability: Built Ecology

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

49

Holistic Sustainability: Built Ecology

DESIGN INTEGRATION

The timeline below shows the critical stages of involvement to establish, create and deliver high performance integrated project designs

ARCHITECTURAL INTEGRATION

- Critical Stage to Inform the High Performance Design
- Establishing Goals
- Research and Engineering Data to Inform Building Massing
- Integration of Systems
 Sizing & Facade Designs
- □ Inventing New Solutions

SYSTEM SYNERGIES

- Critical Stage to Inform the High Performance Design
- Designing Holistic Energy and Water Strategies
- Integrating Optimized
 Envelopes for Daylight with
 Electric Lighting Strategies
- District Energy
 Opportunities
- On-site Energy Generation Potentials

DELIVERED PERFORMANCE

- Crucial Process to Ensure
 High Performance Designs
 Are Properly Coordinated &
 Executed
- Custom Product Design Prototyping to Verify Performance
- Following Concepts
 Through Construction
- Measuring Actual
 Performance

ACHIEVING OUR COMMITMENTS

- Essential Verification of Design Compared to High Performance Commitments
- AIA Commitment & Architecture 2030
 Challenge Reporting
- □ Net-Zero Building Design
- LEED Documentation and Reporting
- Living Building Challenge

Holistic Sustainability: Built Ecology

FRAME WORK OF UNDERSTANDING

NEED

[WHAT IS IMPORTANT TO ME?

PRIORITIES

COST EFFICIENCY OF CONSTRUCTION

COST EFFICIENCY OF OPERATIONS

FUNCTIONALITY

ENERGY EFFICIENT SYSTEMS

FLEXIBILITY TO MODIFY ENVIRONMENT

COMPUTER COMMUNICATIONS INFRASTRUCTURE

BUILDING CONTROL SYSTEMS

COLLABORATION AREAS

SUSTAINABILITY FEATURES

SAFETY FEATURES

ROOM FOR EXPANSION

STORAGE

49

NEED

[WHAT IS IMPORTANT TO ME?]

PRIORITIES

Sustai Effici	nable Labs Canada Webinar: ent and Sustainable Facility Design		18
	STORAGE		54%
	ROOM FOR EXPANSION		48%
	SAFETY FEATURES	LND and R & D Lab Design Survey, 2010	80%
	SUSTAINABILITY FEATURES		33%
	COLLABORATION AREAS		47%
	BUILDING CONTROL SYSTEMS		36%
	COMPUTER COMMUNICATIONS		83%
	FLEXIBILITY TO MODIFY ENVIRONMENT		44%
	ENERGY EFFICIENT SYSTEMS		52%
	FUNCTIONALITY		70%
	COST EFFICIENCY OF OPERATIONS		68%
	COST EFFICIENCY OF CONSTRUCTION		57%

February 18, 2015

Why... "...labs shy away from "green building" because they fear it will be significantly more expensive than conventional building design."

But... "...if they had no budget constraints, they would place a "high" priority on energy-efficient HVAC (47%) and lighting (53%). These user-side respondents also rated energy-efficient systems (52%) as very important features in any lab environment."

Aspiration. "... [sustainability] brings the need to be open-minded and experimental regarding new technologies that may not have been tried in laboratories before."

→ 33% ?

Do Less. With Less. Get More.

Understand your Science. Know your resources. Build what you need.

A 49 Water. Power. Air.

*SOMETECH - ENGINEERED SYSTEMS

- Heating and Cooling Equipment
- Lighting Equipment

LOW TECH - PASSIVE SYSTEMS

- If you need energy, maximize what is available; wind and sunlight
- Building Orientation

NO TECH - LOAD AVOIDANCE

- Minimize Mechanical Engineering
- Minimize Electrical Engineering

LIFE OF A BUILDING

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

49

SCIENCE + PEOPLE BASED PROGRAMMING

Sustainability System

49

Sustainability System

49

Basic Payback Analysis A Systematic Approach

A survey company (CIBEUS) recently asked what an appropriate payback period would be for an organization to consider undertaking an energy efficiency retrofit of any kind. The average payback period considered appropriate for the commercial and institutional building sector as a whole is 4.8 years. Duration naturally depends on the type and content of work. Overall, 57% of owners would consider doing work with a payback period of 5 years or more. A mere 9% would consider it only if the payback period was 1 year or less.

Life Cycle Cost Analysis

Photo-voltaics, new appliances, and modern technologies tend to cost more money. Most green buildings cost a premium of <2%, but yield 10 times as much over the entire life of the building. Kats, Greg, Leon Alevantis, Adam Berman, Evan Mills, Jeff Perlman. The Cost and Financial Benefits of Green Buildings, November 3rd, 2008

In regards to the financial benefits of green building, "Over 20 years, the financial payback typically exceeds the additional cost of greening by a factor of 4-6 times. And broader benefits, such as reductions in greenhouse gases (GHGs) and other pollutants have large positive impacts on surrounding communities and on the planet."

Kats, Gregory. (September 24, 2010). Costs and Benefits of Green Buildings [Web Log Post].

Life Cycle Cost Analysis

A life cycle assessment (LCA) can help avoid a narrow outlook on environmental, social and economic concerns by assessing a full range of impacts associated with all cradle-tograve stages of a process: from extraction of raw materials through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling. Impacts taken into account include (among others) embodied energy, global warming potential, resource use, air pollution, water pollution, and waste.

New Modeling Technologies

New technologies available to model the performance of engineering systems.

EE4

New Modeling Technologies

EE4 MODELLING GUIDE VERSION 1.7

Side View

Top View

Figure 2-2 - Grouping Zones According to Heating and Cooling Loads

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

49

Α

Natural Resources Canada Ressources naturelles Canada

CAN-QUEST

New Modeling Technologies

Electric Consumption (kWh x000)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Space Cool	5.41	7.10	8.59	10.08	11.03	-	-	-	15.30	11.65	7.99	7.37	84.53
Heat Reject.	0.07	0.09	0.13	0.25	0.30	-	-	-	0.45	0.28	0.15	0.08	1.78
Refrigeration	-	-		-		-		-			-	-	
Space Heat	-	-	-	-	-	-	-	-	-	-	-	-	-
HP Supp.	-	-	-	-	-	-	-	-	-	-	-	-	-
Hot Water	-	-	-	-	-	-	-	-	-	-	-	-	-
Vent. Fans	32.70	31.07	37.61	35.97	32.70	-	-	-	34.34	32.70	32.70	34.34	304.14
Pumps & Aux.	4.93	4.75	5.73	5.53	5.11	-	-	-	5.38	5.10	5.00	5.24	46.76
Ext. Usage	-	-	-	-	-	-	-	-	-	-	-	-	
Misc. Equip.	25.22	23.96	29.01	27.75	25.22	-	-	-	26.49	25.22	25.22	26.49	234.59
Task Lights	-	-		-		-	-	-	-	-	-	-	
Area Lights	24.58	20.62	23.53	22.25	19.94	-	-	-	21.78	22.11	25.79	26.20	206.80
Total	92.92	87.59	104.60	101.82	94.30	-	-	-	103.73	97.07	96.86	99.70	878.59

*

Natural Resources Canada Ressources naturelles Canada

CAN-QUEST is a Canadian adaptation of eQUEST, the popular building energy simulation software from the United States.

49 Ecotect Analysis New Modeling Technologies

Α

Sefaira

New Modeling Technologies

49

Α

n -	m	
11 1	1 H H H	
n in the	Call I	\sim
		1
		/

Energy Use	
3,825,008 kBTU	78 kBTU/ft2
Water Use	
712,880 gal	8 gal/person
CO2 Use	
1,128,831 lbsCO2	4,515 lbsCO2/person

Energy Use	
4,740,160 kBTU	81 kBTU/ft2
Water Use	
712,880 gal	8 gal/person
CO2 Use	
1 672 106 15:000	5 888 lbs/ 02/person

E	ne	**	зv	1 U	se

84 kBTU/ft2
8 gal/person
5,041 lbsCO2/person

Energy Footprint (kBTU)

Energy Footprint (kBTU)

Energy Footprint (kBTU)

New Modeling Technologies

TRNSYS

Green Building Studio

New Modeling Technologies

Autodesk[•] Green Building Studio[•]

A whole-building energy analysis web service that helps architects and designers capture early design thinking to support sustainable design.

Some Tech: Passive & Active Approaches To Improve Overall Building Energy Performance

Scrutiny of Air Change Rates Zone Definition & Control **Demand Based Ventilation** Heat Reclamation Source Capture, Source Control – Ventilated Benches and Snorkels Concentration of Heating & Cooling Loads for Better Control Low Flow Fume Hoods **Energy Star Equipment** Chilled Beams **Open Concept Planning** Flexible Laboratory Casework and Overhead Service Distribution Commissioning & Re-commissioning **Integrated Design Process**

Some Tech: Passive & Active Approaches Scrutiny of Air Change Rates

Some Tech: Passive & Active Approaches Zone Definition & Control

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

Some Tech: Passive & Active Approaches Demand Based Ventilation

Some Tech: Passive & Active Approaches Heat Reclamation

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

49

Source Capture, Source Control

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

Some Tech: Passive & Active Approaches Concentration of Heating & Cooling Loads for Better Control

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

Some Tech: Passive & Active Approaches Low Flow Fume Hoods

Sustainable Labs Canada Webinar: Efficient and Sustainable Facility Design February 18, 2015

49

Some Tech: Passive & Active Approaches Energy Star Equipment

Some Tech: Passive & Active Approaches Chilled Beams

Some Tech: Passive & Active Approaches Open Concept Planning

Some Tech: Passive & Active Approaches Flexible Laboratory Casework and Overhead Service Distribution

Some Tech: Passive & Active Approaches Commissioning & Recommissioning

Some Tech: Passive & Active Approaches Integrated Design Process

On the outside we are a design-forward national architecture practice with focused expertise. Inside we embody the Canadian principles of honesty, diversity, practicality and regionalism.

12 LOCATIONS / 300 EMPLOYEES

National Sectors

Health Care Science and Technology Security and Defence Sports and Entertainment Hospitality Transportation

Regional Sectors

Cultural Commercial Educational Historical Residential Industrial