

Experiences from the Re-location and Re-location Planning of Various Laboratories

Presented by: Peter Slinn,

Natural Resources Canada

Table of Contents

- Context and Considerations
- Lab Commissioning Experiences
- **Lessons Learned**
- **Functional Program Outline**
- **Implementation**
- Conclusion

Context and Considerations

- A lab re-location requires analysis and costing of:
 - Facility
 - Equipment
 - Processes
 - People
- Developing clear, well-defined operational requirements is critical
- Maintaining these requirements throughout the life-cycle of the organization is advised

Key Questions

- Lab design process and deliverables
- Research and OHS&E requirements
- Acts, regulations, codes, standards, and best practices
- Project's impacts

Variety of Lab Types

- Wet/ dry labs
- Analytical labs
- Small scale physical simulation labs
- Industrial pilot scale simulation labs
- Field certification labs
- High density computational facilities

Variety of Hazardous Materials

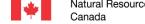
- Standard lab chemicals in small quantities
- Acid digestion processes
- Radioactive materials in small to moderate quantities
- Compressed gases in moderate quantities
- Cryogenic liquids
- Small and large quantities of hazardous process byproducts

Process Risk Analysis

- Potential process failure modes
 - Facility containment failure
 - Structure
 - HVAC supply and exhaust fans
 - Ducting rupture
 - Tank, piping, valves, fitting, etc. failure
 - Electrical failure
 - Safe guarding failure
 - Operator error
 - Etc...

Process Risk Analysis cont'd

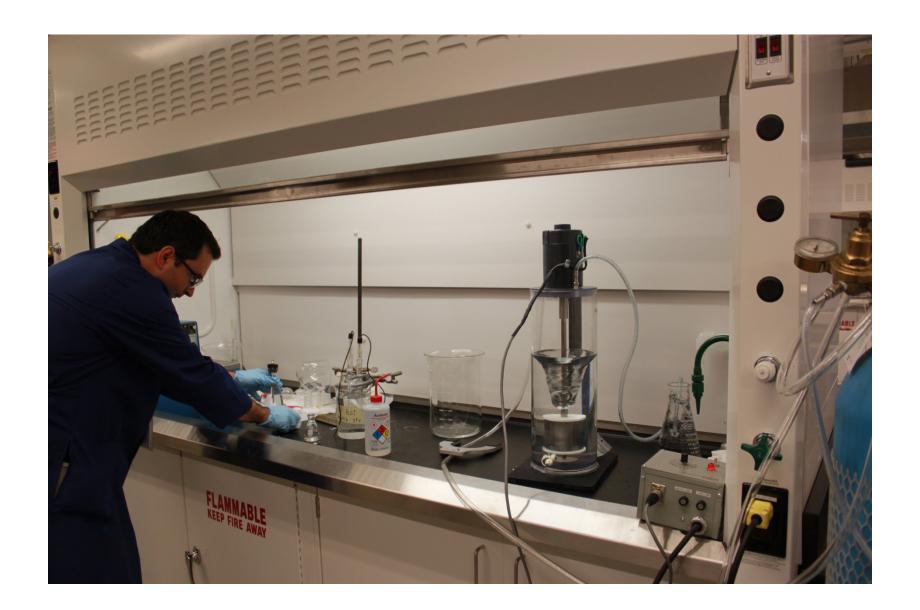
- Non-scenario-based hazard evaluation procedures
 - Pre-Start Health and Safety Reviews
 - Relative Ranking
 - Checklist Analysis
- Scenario-based hazard evaluation procedures
 - What-If Analysis
 - What-If/ Checklist Analysis
 - Hazard and Operability (HAZOP) Studies
 - Failure Modes and Effect Analysis
 - Fault Tree Analysis
 - Event Tree Analysis
 - Cause-Consequence Analysis



Lab Commissioning Experiences

- Key Considerations:
 - Unique requirements
 - Operational diversity
 - Breadth of expertise required
 - Lab processes not well understood
 - Familiarity with applicable OHS&E codes and standards

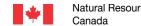
Let's look at some examples...



Lessons Learned

- What is the lab design process and what deliverables are required?
- Research and OHS&E Requirements
- Room Data Sheets
- Functional Program Report
- Schematic Designs
- Detailed Design
- Construction
- Hand-over to client

Operational Requirements are documented in the following manner...


- Lab methods
- Equipment, materials, processes, and by-products
- Room data sheets
- Structure the data so that building and environmental engineers can conduct their work

Room Data Sheet Structure

- Lab classification
- Activity description
- Lab methods analysis
- Facility/ equipment interface
 - Architectural
 - Structural
 - Mechanical
 - Electrical
 - Safety
 - Lab Layout

Lab Methods Analysis

- Theoretical chemical reaction determination
- Risk assessments
- Environmental impact assessments
- Environmental impact re-certifications
- Safety

Equipment Requirements

- Environmental disturbances
- Radiation safety requirements
- Structural requirements
- HVAC requirements
- Process cooling water requirements
- Electrical requirements
- Fire protection requirements
- Plumbing requirements
- Compressed gas and cryogenic liquids requirements
- Telecommunication requirements

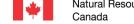
Functional Program Outline

- Executive summary
- Introduction
- Existing state
- Lessons learned
- Future state
- Technical and performance requirements
- Concept diagrams

Implementation

Codes and Standards

- 15 pages of references
- Many and ever growing reference texts
- In-house developed documents


Research and OHS&E Requirements

- Reference / checklist document is 100 pages, feeding:
 - Equipment procurement specifications
 - Equipment installation specifications
 - Building layout and fit-up requirements
 - Project Commissioning Test Plan

Scope and Processes

- Breadth of consideration
 - Facility
 - Equipment
 - Processes
 - People
- Lab methods analysis
- Process hazard analysis
- Documentation
- Certifications
- Training
- Continuous change management process

Conclusion:

- Keys to success:
 - Holistic view Facility, Equipment, Processes and People
 - Right team to answer ALL the questions
 - Clear client requirements
 - Detailed Room Data Sheets
 - Aligned Functional Program
 - Ability to address organizational change management implications

Questions?

Peter Slinn

Email: peter.slinn@nrcan-rncan.gc.ca

Cell: 905-906-8979

