Building for the Future

SLCan Workshop, June 19, 2014

Christiane Claessens

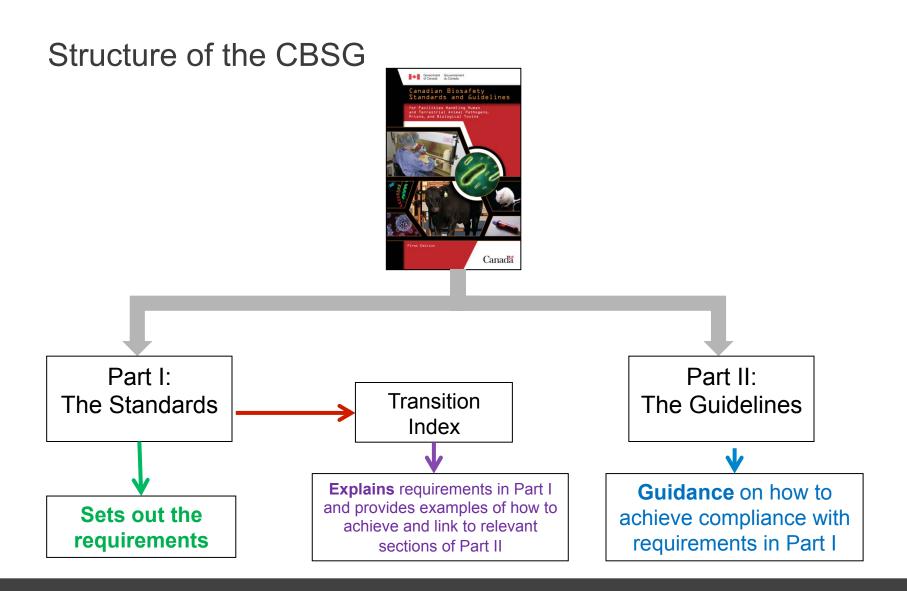
Manager, Biosafety Inspection Program, Centre for Biosecurity

PROTECTING CANADIANS FROM ILLNESS

Presentation outline

- PHAC Regulatory authorities
- Canadian Biosafety Standards and Guidelines
- Costs and facility design considerations
- Process for certification and compliance verification
- PHAC International work
- HPTA Process Moving Forward

Public Health Agency of Canada's Centre for Biosecurity


- Formerly the Pathogen Regulation Directorate
- National authority on biosafety and biosecurity for human pathogens and toxins
- Strives to protect the health and safety of the public by promoting a minimum standard of practice for all persons conducting activities with human pathogens and toxins, as well as cultures of terrestrial animal pathogens in Canada

PHAC Regulatory Roles

- Human Pathogen Importation Regulations, 1994, and the Human Pathogens and Toxins Act, 2009
 - » give the Public Health Agency of Canada (PHAC) the authority to govern activities with human pathogens and toxins.
- Health of Animals Act, 1990, & Regulations
 - » give the Canadian Food Inspection Agency (CFIA) the authority to govern the importation of animal pathogens into Canada.
- As of April 1, 2013 the Agencies consolidated the importation processes and laboratory compliance monitoring and certification for human and terrestrial animal pathogens.
- The Canadian Biosafety Standards and Guidelines is the tool for assessing compliance

Canadian Biosafety Standards and Guidelines (CBSG) Concept

- Joint project between the PHAC and the CFIA
 - » began in June 2010.
- Harmonized Initiative to combine 3 existing biosafety documents
 - » Standards and guidelines for human and terrestrial animal pathogens and toxins (including prions).
- Clear update with a NEW approach:
 - » a more risk-, performance-, and evidence-based lens.

Biocontainment Engineering Science Working Group (BESWG)

- Established to:
 - » identify, challenge, and re-define requirements based on outdated biocontainment engineering principles
 - » redefine requirements to increase biocontainment safety, properly manage risk, maximize energy conservation, and bring forward modern engineering technologies;
- Engaged participation: members are from PHAC, CFIA, PHAC-NML, and Industry (canadian and international);
- BESWG challenged many requirements during the development of the CBSG 1st Edition;
- BESWG is still active and continues to provide feedback in the development of future editions of the CBSG.

Biocontainment Engineering Science Working Group

- Working group assembled to discuss and develop methods to investigate and/or test various biocontainment engineering issues and knowledge gaps within the biocontainment industry in order to validate compliance requirements or establish new ones;
- The working group will also link to the IFBA Biocontainment working group and the Design Requirements Manual for Biomedical Laboratories and Animal Research Facilities (DRM 2012).

Benefits to Regulated Parties

- Nationally streamline biosafety requirements and practices;
- Single reference document for facilities handling animal <u>and</u> human pathogens;
- Ease burden for regulatory compliance; and,
- Continued collaboration between PHAC and CFIA to harmonize regulatory processes.

Final CBSG Overview

- The number of requirements did not increase and are not significantly different from the previous standards and guideline—performance- and risk-based wording changes;
- There were some 'new' requirements added that were based on input throughout development; also some are 'new' to certain work areas due to harmonization;
- Some requirements were removed or have become less stringent due to the risk-and evidence-based approach that was used during development.

Future Editions

- The 2nd Edition being developed and scheduled for release in February 2015
 - » will correspond to the full implementation of the Human Pathogens and Toxins Act (HPTA);
- 2nd Edition will be split into 2 volumes:
 - » Canadian Biosafety Standards (CBS) an update of Part I of the CBSG;
 - » Canadian Biosafety Handbook (CBH) an update of Part II of the CBSG;
- 2nd Edition incorporating information from the HPTA consultations and changes as a result of completed BESWG reviews;
- New series of additional guidelines documents are being developed to further complement the CBS, CBH, and to further support the HPTA;
- Comments, clarifications, and suggestions for the 2nd Edition are welcomed
 - » comment period on draft to begin soon through the CBSG website.

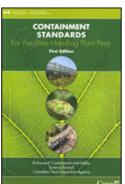
CBSG App – In Development

- Sorts requirements based on CL and work type;
- Creates checklists;
- Links requirements to Transition Index entries and related Guidelines;
- Animated diagrams.

Standards

Terrestrial human/animal (Canadian Biosafety Standard and Guidelines)

- CL2 / CL2-Ag (including large scale and TSE facilities)
- CL3 / CL3-Ag (including large scale and TSE facilities)
- CL4


Containment Standards for Facilities Handling Aquatic Animal Pathogens

AQC2 and AQC3 (in collaboration with CFIA)

Containment Standards for Facilities Handling Plant Pests

PPC1, PPC2 and PPC3 (in collaboration with CFIA)

CBSG requirements for : Handwashing Sink

- R 3.6.4 Handwashing sinks to be provided and located as close as possible to the point(s) of exist of the containment zone, animal room/ cubicle and PM rooms (All areas)
- R 3.6.5 Handwahing sinks to be provided with hands-free capability (All areas except CL2 LWA)

Hands-free

\$1000 -1,500

Minimal

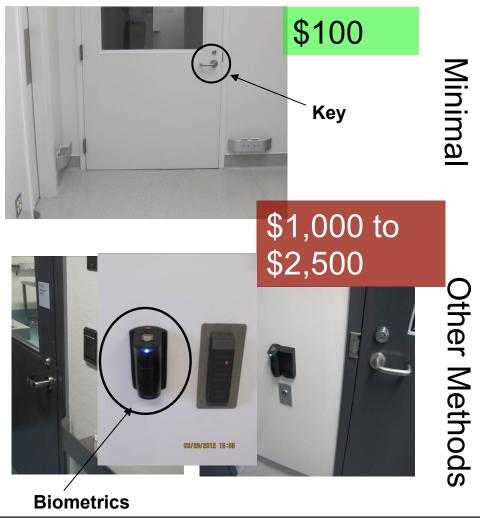
CBSG requirement for : Inventory

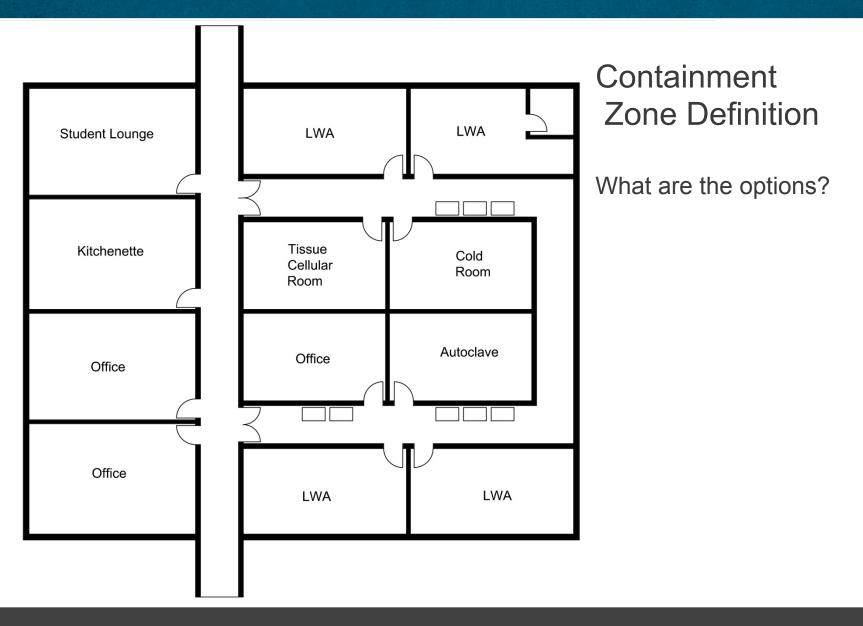
 R 4.1.12 Inventory of infectious material and toxins handled or stored in the containment zone to be maintained, and kept up to date. Infectious material or toxins stored outside the CL2 and/or CL3 zones to be included in the inventory.

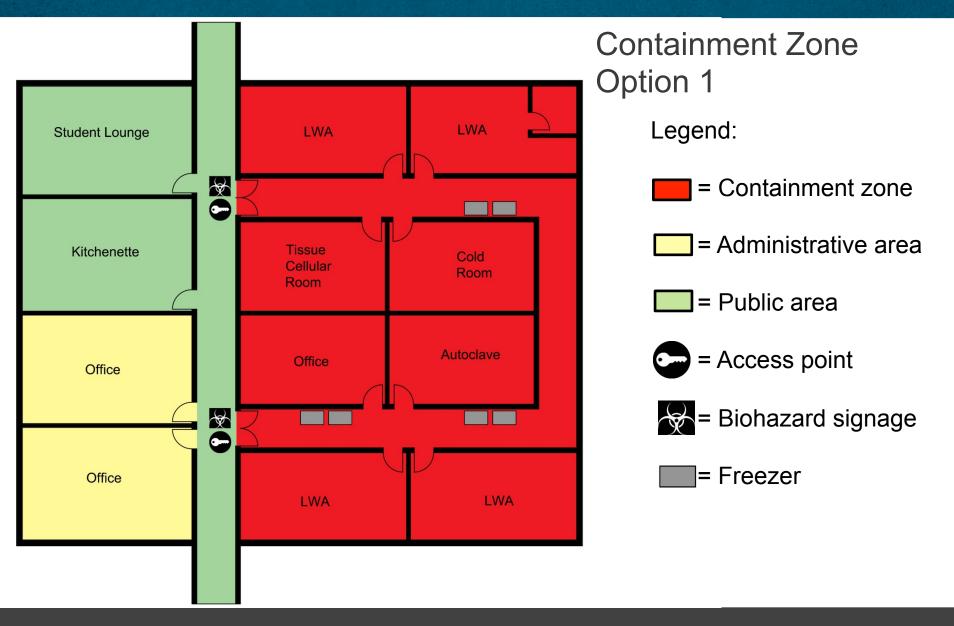
\$3,000 to \$50,000

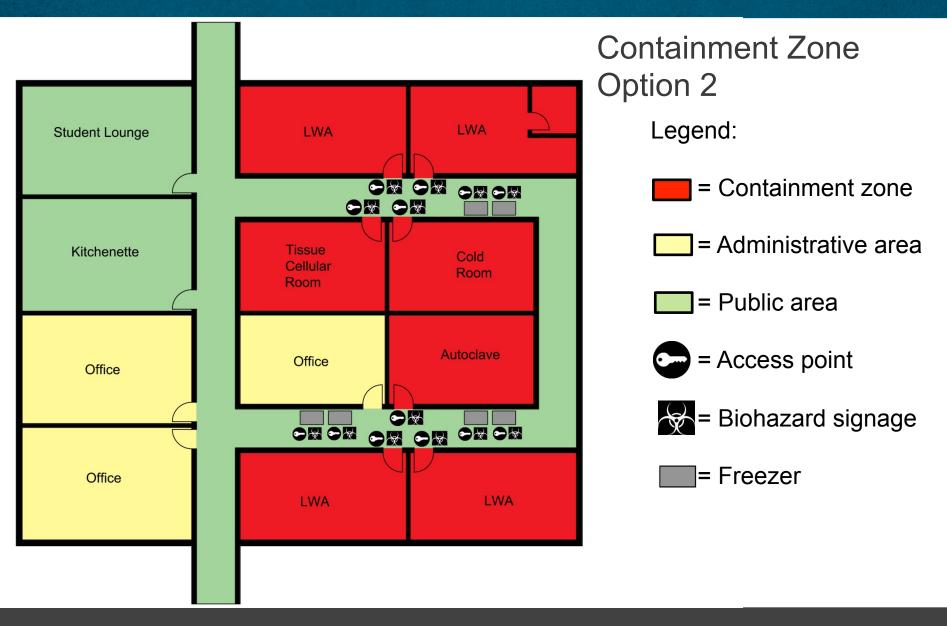
CBSG requirement for : Surface Finishes

- R 3.4.1 Doors, frames, casework, bench-top and laboratory furniture(e.g., stools, chairs) to be constructed from non-absorbent materials. Wood surfaces are permitted in CL2 laboratory work areas if sealed to be non-absorbent.
- R 3.4.2 Surfaces and interior coatings to be cleanable and resistant to scratches, stains, moisture, chemicals, hear, impact, repeat decontamination, and high pressure washing, in accordance with function.
- R. 3.4.6 Floors to be slipresistant in accordance with function.






CBSG requirement for : Access control


 R.3.3.1 Doors to the containment zone to be lockable.

Restricted access into the containment zone to be provided through a controlled access system (All areas except CL2 LWA).

CBSG requirement for : Interlocking doors

Anteroom(s) to be provided with mechanically or electronically interlocked doors (equipped with manual overrides for emergency exist), or visual/audible alarms, or other acceptable means to ensure that no critical combination of doors can be opened simultaneously (CL2Ag, CL3).

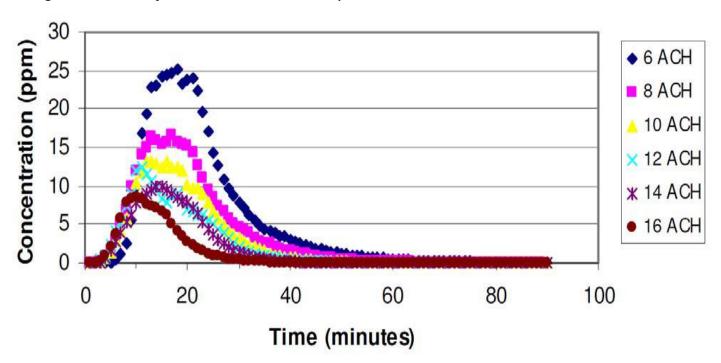
Minimal

CBSG requirement for : Monitoring

R 3.7.19 Observation windows and/or video equipment to be installed in a manner that allows activities to be visually monitored from outside the containment barrier (CL4 only).

\$1,000

\$15,000



CBSG requirements: Air Changes Per Hour (AC/hr)

- R. 3.5.1 HVAC system to provide sufficient air changes per hour (AC/hr) under normal operation to maintain airflow, bases on facility function.
- Frequently Asked Questions
 - How many AC/hr do I need for my lab? ACH is based on facility function and typically determined by the facilities management.
 - » Where can I find information about AC/hr? There are a couple of good sources to reference; ASHRAE 62.1, Canadian Council on Animal Care
 - » What contributes to determining AC/hr? Occupancy, heat load (equipment, lighting, etc.), work activities (e.g. working with chemicals).

CBSG requirements: Air Changes Per Hour (AC/hr)

How does ACH contribute to biosafety and biocontainment? The following table can provide a theoretical understanding of how AC/hr can contribute to good biosafety and biocontainment practices.

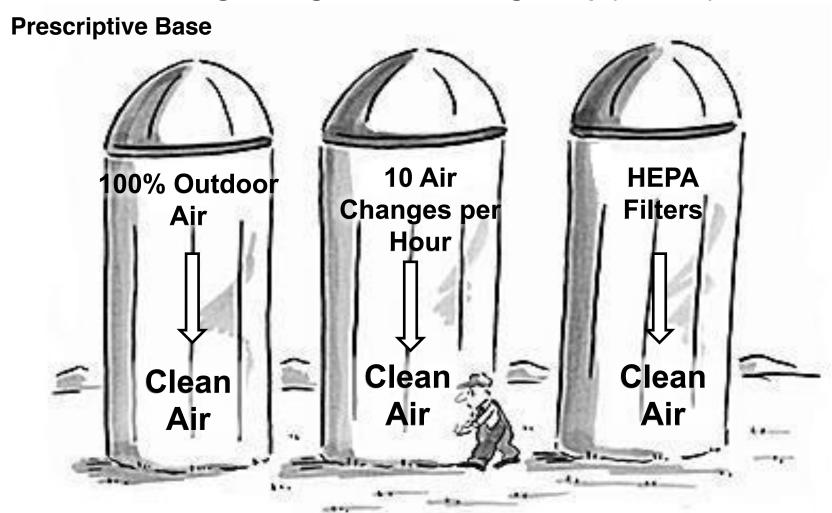
CBSG requirement: Containment barrier integrity

- R. 4.10.4 Integrity of containment barrier to be tested by pressure decay testing by pressure decay testing. Acceptance criteria include two consecutive tests with a maximum of 250 Pa loss of pressure from an initial 500 PA over a 20 minutes period (CL3-Ag non indigenous and CL4 areas).
 - Consider design to accommodate pressure decay testing if required;
 - Consider structural design of containment barrier based on maximum operating pressure.

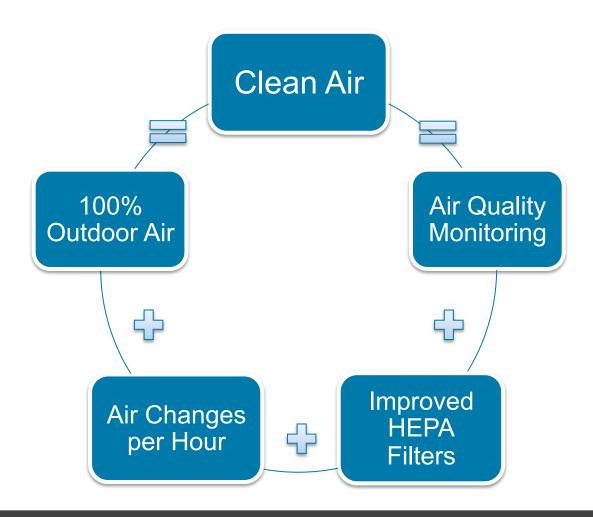
Items Investigated by the Biocontainment Engineering Science Working Group

- 100% Outside Supplied Air;
- 10 Air Changes Per Hour;
- Structural stability to withstand 1.25 times maximum design pressure
- inward directional airflow necessary;
- "airtight"/"sealed"/"sealable" labs;
- Prevention of positive pressurization: Acceptable mechanisms?

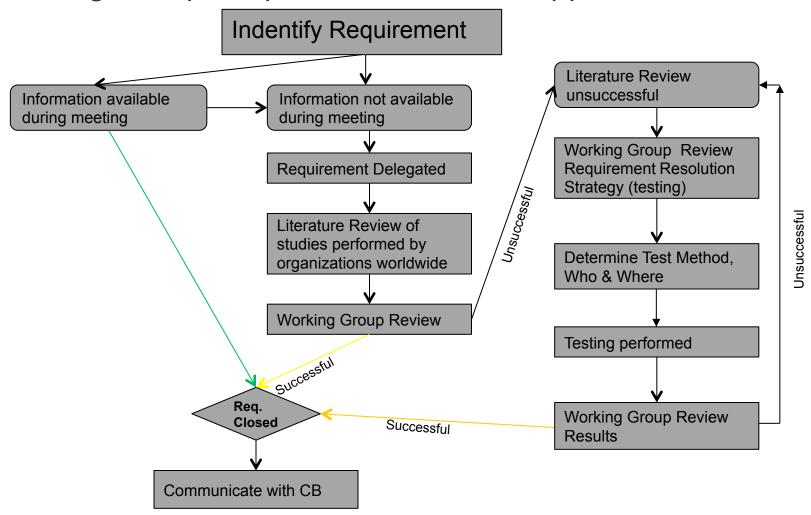
Previous requirement on Air Changes per Hour


Air systems are required to provide a minimum of 10 airchanges per hour under normal operations

Item #	Matrix 3.5: Heating, Ventilation, and Air Conditioning (HVAC)	C L1	C L2	ACL2	C L3	AC L3	C L4
3.5.1	Exhaust air system to provide a minimum of 10 air changes per hour under normal operations.	O	•	•	•	•	•
3.5.2	Exhaust air system from animal rooms/cubicles to provide 15-20 air changes per hour as per the Canadian Council on Animal Care (CCAC) guidelines on: laboratory animal facilities.	O	•	•	•	•	•


Q1: Under what conditions would it be necessary to have a minimum number of air changes per hour for biocontainment laboratories?

Q2: How should this be established?


Biocontainment Engineering Science Working Group (BESWG)

Performance Based

Working Group Requirement Solution Approach

Resolved Item

- Method to determine an acceptable quantifiable airflow reversal;
- Removal of In-Line HEPA filters as a requirement for CL3 if air tightness of pressure differential devices can be proven;
- Slip Resistant for Floors performance based requirement;
- Ventilation System Interlocks defined for performance based;
- 100% Outdoor Supply Air, no longer required;
- Air changes per hour to be performance based for;
- Inward Directional airflow requirements for CL2 and CL3 reviewed & defined;
- Guidelines to be provided on how laboratories are to treat fire suppression water in the vent of a release.

Unresolved Item

- In what instances can the air in a Plumbing Vent Line be contaminated and how would it impact any other part of the building?
- For what reason does the supply air to a CL4 need to be HEPA filtered?
- Provide design and operational issues that can occur with the removal of the "100% fresh outside air" requirement?
- Provide guidance to the relationship between CSA and local plumbing code requirements for backflow preventers;
- In what instances would Autoclave condensate be considered contaminated?
- In what instances would Autoclave exhaust air be considered contaminated?

Over Engineering

Benefits

- » Increases perceived quality;
- » Promotes development of emerging technology;
- » Can produce a safer work environment through redundancies;
- » Reduced reliance on operational practices.

Drawbacks

- » Very Costly;
- » Higher risk for complications;
- » Numerous procedures, SOP Required;
- » Precedent;
- » Often difficult and costly to maintain and test.

Approach to Compliance

- Key compliance and enforcement activities for the Agency include:
 - » Compliance promotion (e.g., education, tools and dialogue);
 - » Compliance monitoring (e.g., inspections, audits);
 - » Enforcement (orders, investigation or prosecution, if warranted).
- The Agency has traditionally focussed on compliance promotion.
 - » Evidence demonstrates that compliance is higher for regulated parties who understand why it is important to comply and how to comply.

Pathogen Safety Data Sheets (PSDSs)

- Technical documents that describe the hazardous properties of a human pathogen and recommendations for work involving these agents in a laboratory setting;
- Produced by the PHAC as educational and informational resources for laboratory personnel working with these infectious substances;
- Can be adapted to meet legal obligations to produce or provide a safety data sheet for infectious substances (i.e., as obligation under the Workplace Hazardous Materials Information System or Hazardous Products Act);

PHAC e-Learning Portal

- Several online biosafety courses and videos are offered for free
- New online courses coming soon:
 - **Toxins**
 - Working with Small Animals in Containment
 - Working with Large Animals in Containment
 - **Dual Use**
 - And More!

Compliance Promotion

- In preparation for the implementation of the *Human Pathogens and Toxins* Regulations (HPTR) at the end of 2015, the PHAC has a proactive approach to help regulated parties achieve compliance through:
 - » Fducation
 - Assisting regulated parties in understanding their obligations;
 - Information sharing and dialogue
 - Providing guidance, advice, training, and support.

Compliance Monitoring & Verification

- Ensuring that regulated activities are carried out in accordance with the provisions of the HPTR
 - Reviewing Applications received for the issuance of Containment Level 2 Compliance Letters or CL3 re-certification;
 - Performing audits;
 - Evaluation of biosafety programs.
- Validation that regulated activities are carried out in accordance with the provisions of the relevant Acts and regulations
 - Conducting on-site inspections;
 - Verifying shipping and customs declarations.

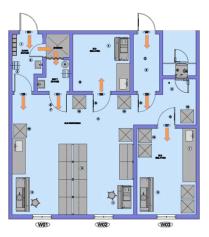
Compliance Promotion - Containment Level 3 Certification

- Verify that applicants meet the applicable requirements under CBSG, 1st
 Edition
 - » SOP reviews, drawing reviews, performance verification test report reviews;
 - » Facility inspections.
- Compliance may be verified at a later time by the PHAC or the CFIA.
- Will support an application to import human and animal pathogens and toxins.
- PHAC reviews most CL3 certifications
 - » PHAC verifies compliance for: human and terrestrial animal pathogen labs;
 - » CFIA verifies compliance for: FADs and emerging animal pathogen labs.

ESS Involvement

Drawing / Specification Review

- Understanding overall system and layout
- Compliance verification


Technical Guidance

- General inquiries
- Performance and verification testing

ESS Inspections

Pre-inspection / Site Visit

Opportunity for discussion with regulated party

- Certification
- Follow-up

Recertification Inspection

Aligned with licencing every 3 years (proposed)

Frequent issues for CL3 facilities

- Incomplete commissioning
- Mechanical failure
- Equipment issues
- Equipment knowledge
- Equipment issues

A) Incomplete Commissioning

Building Commissioning vs. Lab Certification

- Two different activities;
- Ensure both activities are covered in contract documents.

Building Commissioning Issues

- Ductwork layout (no unknown cross-connections);
- Piping layout (no unknown cross-connections);
- Correct positioning of dampers.

Lab Certification Issues

Understanding CBSG testing requirements (Chapter 4).

B) Equipment Knowledge

Effluent Decontamination System

- Is it required for your lab?
- Understanding all functions and intent.

Microbiological Vacuum System

- Portable vs. Permanent;
- Understanding intent of system.

Municipal / Provincial Requirements for use

 System selection should consider municipal and provincial requirements (ie. temperature and pH levels).

C) Mechanical Failure

Supply and Exhaust Fan System

- Loose or broken fan belt;
- Motor failure;
- Fan key break.

Considerations

- Preventative maintenance program;
- Replacement parts in stock;
- Impact on operational modes;
- Fan redundancy.

D) Equipment Issues

Autoclave Air Filters

- High probability of clogging;
- Replacement not tracked on all autoclaves.

Considerations

- Consider tracking for next autoclave purchase;
- Incorporate into preventative maintenance;
- Verify replacement frequency with manufacturer.

D) Equipment Issues (cont'd)

Biological Safety Cabinets

- BSC selection;
- Class II/B2 BSC "puffback";
- Inflow issues combined with airtight spaces.

Considerations

- Understand differences for each BSC selection;
- "Puffback" or airflow reversal issues:
 - a) Mechanical breaking mechanism;
 - b) Adjust flow setpoints;
 - c) Implement procedures;
 - d) Perform biological work in a different cabinet;
- Modify control sequences serving airtight room to eliminate inflow issues.

Containment Level 2 Compliance Monitoring

- Compliance Letter
 - Self-attestation from the applicant that the facility meets the applicable requirements under the CBSG, 1st Edition published in July 2013;
 - Compliance may be verified at a later time by the PHAC or the CFIA;
 - Will support an application to import human and animal pathogens and toxins;
 - Will allow purchase of human and animal pathogens and toxins at Canadian distributor companies;
- PHAC reviews all CL2 compliance letter applications. Compliance letter application to the CFIA is no longer needed.

Inspection of CL2 Facilities

- Selection of sites
 - » Inherent risk
 - Nature of work
 - Diagnostic; in vitro; in vivo; storage; large scale production
 - Complexity of the work
 - » Compliance history (e.g., previous inspections, import issues)
 - » Current issues arising
 - » Request for assistance
 - » Random selection of facilities that do not meet above criteria

For announced inspections, selected sites will be contacted at least 10 days before the on-site visit

Enforcement

- The correction of non-conformities can often be achieved through the development of appropriate corrective measures.
- Further enforcement actions may be used when:
 - » The cooperative approach does not lead to compliance;
 - » The regulated party is incapable of correcting the non-compliance.
- In some cases, enforcement actions may be the appropriate initial tool to correct or prevent non-compliance.

Beyond our Borders

- Canada is involved in international collaborative groups and initiatives both as part of ensuring we share and benefit from global best practices and as a result of formal obligations and a common goal of prohibiting the proliferation and development of biological weapons.
- CB also provides expertise to other countries to help build expertise in biosafety, biosecurity and biocontainment.

HPTA Process Moving Forward

- Pre-publication of proposed regulations in Canada Gazette, Part I for public comment;
- Web-based consultations on draft regulations;
- CBS 2nd Edition open for public comments;
- Parliament's review of the regulations;
- Approved regulations published in Canada Gazette, Part II;
- CBSG 2nd Edition final;
- Up to December 2015 the Agency will work with stakeholders to support implementation.

December 2015

Remaining sections of the HPTA to come into force, along with regulations.

Information and Engagement

- New monthly newsletter distributed via e-blast (Are you in our database?)
 - » Key program updates;
 - » Quick hits;
 - » Stay connected share your stories;
 - » Suggestions/comments.
- Revamped website
 - » User friendly;
 - » Timely/updated content;
 - » www.publichealth.gc.ca/pathogens.
- Advisory Committee-HPT Call for membership June 30th deadline.
- Information sessions concurrent with Canada Gazette. I
- Exposure reporting tool: touch-base.

Contact Information

- CBSG
 - » http://www.publichealth.gc.ca/pathogens
 - » standards.normes@phac-aspc.qc.ca
- E-Learning portal
 - » www.publichealth.gc.ca/training
- PSDS
 - » http://www.phac-aspc.gc.ca/lab-bio/res/psds-ftss/index-eng.php
- BESWG
 - » Joe Tanelli joe.tanelli@phac-aspc.gc.ca
- Compliance letters (CL2)
 - » biosafety biosecurite@phac-aspc.gc.ca
- Certification (CL3)
 - » biocon@phac-aspc.gc.ca
- HPTA consultation/Newsletter
 - » HPTA.LAPHT.consultations@phac-aspc.gc.ca