

Putting Energy Hogs on a Diet: Filtered Fume Hoods

by Ken Crooks
Director, GreenFumeHood Technology

Learning Outcomes

- Review the latest technology advances for filtered fume hoods.
- Explain the requirements of a filtered fume hood.
- Propose a selection matrix for NC and Renovation
- Discuss the results of installations.

Some of Your Clients' Needs

- Reduce construction costs
- Reduce operational costs
- Reduce carbon footprint
- Provide flexibility for changes and growth

While INCREASING safety!

Laboratory Design News U of Rochester

"Ductless" vs. "Filtered"

"Ductless" vs. "Filtered"

A Little History

Ductless Fume Hoods:

- Started in the late 60's
- Hundreds of thousands in use today
- Right tool for the right job

Ductless Hood Filter Options

Filter Name	Trapped chemicals					
AS	Organic solvents					
BE	Acids					
F	Formaldehyde					
K	Ammonia					
G	Radioactive iodine					

Filtered Fume Hoods Must:

- > Filter a broad range and mixture of chemicals
- Detect when filtration ceases, while always maintaining safety
- Communicate its status to EH&S / Facilities
- Integrate into the culture/applications successfully

Mechanics of Adsorption

Polluted Air Adsorbent Clean Air

Contaminant

Activation Process

- Organized structure
- Steam & Heat create spaces between carbon layers
- ➤ 15,000 SqFt/g internal surface area!

Old Activation Process

- Impregnation problem: decreases capacity
- Use of heavy metals to increase retention capacity
- Specific filters (AS, BE...)

New Filtered Fume Hood Media

- > New filtration retains:
 - Polar organic solvents
 - Non-polar organic solvents
 - Inorganic Bases
 - Inorganic acids

Creation of chemical groups on the surface

Filtration Modules

In with Good Air, Out with Better Air

Detection for 1% TLV Exposure

- > Suite of sensors:
 - Acid
 - Solvent
 - Lab Air
 - Temperature
 - Sash Sensor

Fire Prevention/Detection

➤ Temperature Sensor:

Detection and Alerting

104°F (40°C) = Alert

140°F (60°C) = Fan Stop

Communication

- Users have access cards
- Local status display and alerts
- Remote monitoring of hood operation and lab conditions

BACnet Integration

Integration

- > Steps to Evaluate Acceptability are:
 - Chemical List as per AFNOR NFX 15-211
 - Chemical questionnaire process
 - Programming of sensors

1	Nitric acid	Nitric acid Beaker		10000 %	22 C	2 time(s) per	2 mL	20 m			
OXIDATION-REDI	Nitric acid	beaker.	opened	10000 %	22 C	month	2 ML	20 mi			
2- Analysis	(10										
1	1 Containme	nt			Approved						
3- Transfer	2 Detection	2 Detection Approved									
	3 Compatibility Approved										
4- Transfer	4 Estimated Life Expectancy Approved										
	Comments Expected filt	er life time : 24	months with all c	onfigurations;S	Semiconductor s	etting : 3980 mV					

Filtered Fume Hoods Must:

Review

- > Filter a broad range and mixture of chemicals
- Detect when filtration ceases, while always maintaining safety
- Communicate its status to EH&S / Facilities
- Integrate into the culture/applications successfully

Standards / Certification

- Containment: ASHRAE Std 110
- Retention: AFNOR NFX 15-211 as referenced in ANSI/AIHA Z9.5-2012
 - Stages 1 through 4
 - Class 1 (back-up filter)

Regarding Compliance...

- Claims of compliance shall be guaranteed by & documented in 3rd-party independent test reports.
- Additionally, per AFNOR NFX 15-211 manufacturer must supply a chemical list.

Erlab Research & Development Lab

Erlab's state of the art Research & Development Laboratory

Erlab Testing Laboratory

Chemical "Long List"

- ➤ 500+ chemicals, each tested with 6 or more different concentrations.
- Each test performed twice.
- Represents thousands of chemicals.

THE LONG LIST

Chemical Name			Formula			C.A.S Number PE			EL-TWA (OSHA)		PEL-STEL (OSHA)			
	THEL	ONG LIST			Chemical Name	Formula	C.A.5 Number PEL-TV	VA (OSHA) PEL-ST	EL (OSHA)					
Chemical Name	Formula	C.A.S Number PEL-TWA (OSI	HA) PEL-STEL (OSH	(A)	4-Methyl 2-pentanone	CEHIO	108-10-1	00 ppm;		100 ppm		_		
1, 4-Dioxane	C4H8O2	Chemical Name	Formula		4-Methyl-2-pentanone	CEH13O	Chemical Name	Formula	C.A.5 Numb	er PEL-TWA (OSHA)	PEL-STEL (OSHA)			9
1,1,1-Trichloroethane	C2H3CI3	Chemica Pana	Furmusa	_	4-Methylaniline	C7H9N	A serve servets	HCL+HNO3			1			
1,1,1-Inchloroethane	C2H28r4	2-Butoxyethanol	C6H14O2		4-tert-Butyl toluene	CHHIE	Aqua regia Aqueous hydrogen bromide (i.e.	HBr	1000000			_		
1,1,2,2-Tetrachioroethane	C2H2O4	2-Chioroacetaldehyde	C2H3OC3		5-Methyl-3-Heptanone	C2H6O2	Aqueous hydrogen chloride (Le.	HCI sq. sol.	70	Chemical Name	Formula	C.A.S Number	PEL-TWA (OSHA)	PEL-STEL
1,1,2,2-Tetrachioroethane	C2H2D4	2-Chloroethanal	C2H3OC3	25	Absolute alcohol		Arsenic (Inorganic compounds,		-					
,1'-Biphenyl-4,4'-diamine	C8HI6N2	2-Chloroethanol	CZHSOCI		Acetaldehyde	C2H4O2	as As)	Az	74	Toluol	С7НВ	108-88-3	200 ppm	300
I,I-Dichloroethane	C2H4C12	2-Chloroethyl alcohol	CZHSOCI	_	Acetic acid		Asbestos	Hydrated mineral electes	43	Tribromomethane	CHBr3	75-25-2	0.5 ppm	
1,2-Dibromoethane	C2H48r2	2-Chloropropylane oxide	C3H5OCI	_	Acetic anhydre	C4H6O3	Aspiris	C9H8O4	. 5	Trichloroacetic acid	C2HC3O2	76-03-9		
1,2-Dichlorobenzene	C6H4CI2	2-Ethoxy acetate	C6H13C3		Acetic oxide	C4H6O3	Atrazine	CBH14CINS	15	Trichloroethane-1,1,2	C2H9C33	79-00-5	10 ppm	
1,2-Dichloroethane	C2H4C32	2-Ethoxyothanol	C4H10O3		Acetone	C3H6O	Azide	NaN3	26	Trichloroothanoic acid	C2HC3Q2	76-03-9	3 - 10 10 10 10	
1,2-Dichloroethylene	C24/C1	I CENTER OF	CSHIBO		Acetonitrile	N/10	+by Azine	CSHSN	- 1	Trichloroothanoic acid	C2HC3O2	76		
Epoxy-3-isopropoxypropane	6H1212	Jioxane	C5H6O2		Acetylene		Fari m chi ride	BxC0.2H2O	10	Trichloroethene	CZHCB	7.7.40	100 ppm	200
1,2-Ethanediol	C2H6O2	2-Furyimethanol	C3H6O2		Acetylene dichloride	C2H2C12	Benzenamine	C6H5NH2		Trichloroethylene	CZHCB	79-01-6	100 ppm	200
1,3-Butadiene	C4H6	2-Heptanone	C7H14O		Acetylene tetrabromide	C2H28r4	Benzene	CGH6	1.3	Trichloromethane	77-6	<i>0.4.</i> 1		50;
1,3-Cyclopentadiene	CSH6	2-Hexanone	C6H12O		Acetylsalicilic acid	pent	anone	C6H5C3	91	Triethylamine	ALL IN		25 ppm	30
1,3-Dichloropropene	C3H4C12	2-Hydroxymethylfuran	C3H6O2		a-Chlorotoluene		Baragine chiorate	CEHSCI	1	Trifluoroacetic acid	CHERCO	C UNI	J Carrie	
1,3-Dichloropropylene	C3H4C12	2-Methyl-1,3-butadiene	C5H8		Acroleic acid	C3H4O2	Benzine 35 80	C8HI6N2		Trimethyl methane	CHILD	75-28-5		
1,3-Dioxolane	C31 102	2 Morbel I-peoparol	C4HIDO		Acrolein	C3H4O	Benzyl alcohol	C6H5CH2OH	1		1 7 7		1 1	
1,3-Divinvibenzene	10-10	utenal	C5HI2	8	Acrylamide	C3H5NO	Benzyl chloride	C/H/O	1	Trimethyl pentane-2,2,4	- Cunto	ages	lona!	
I-Aminobutane	C4H9NH2	2-Methylpropyl acetate	CEH1202		Acrylic acid	C3H4O2	Beryllium compounds (as Be)	Be	70	Trimethylamine	T July IN I		10119.	
I-Aminopropane	C3H9NO	2-Pentanone	CZHIDO		Acrylic aldehyde	C3H4O	C BET	C21H20N38r	(12	Trimethylbenzene	C9HI2	108-67-8		
I-Butanethiol	C4H10S	2-Pentanone	CSHIDO)	Acrylonitrile		Carried the Shot	CZH7NO		Tungeten	W	7640-33-7	0.00	
1-Butanethiol	C4H105	2-Phenyl propane	C9H12	$^{-}$	Alcohol	Ayuc	ta Chileo ree	AGUZ		a tura ettine oll	CI0HI6	B006-64-2	100 ppm	
I-Butanol	C4HIDO	2-Propanol	C3H8O		Allyl alcohol	C3H6O	beta-Methyl acrolein		4		CZH9CI	75-01-4	l ppm	5 p
1-Chloro butane	C4H9CI	2-Propanone	C3H6O	(8	Allyl alcohol	C3H6O	beta-Methylpropyl ethanoate	C6H12O2	- 21	Vinyl acetate	C4H6C)2	108-05-4	8 8	
-Chioro-2,3-epoxypropane	C3H5O0	2-Propen-1-ol	utoxy	Δt	nanol	C3H4O	Bicyclopentadiene	C10H12		Vinyl bromide	C3H3Br	593-60-2		
-Chloro-2,3-epoxypropane	C3H5O0	2-Proponal	A COURT Y	Ψt	Chiefeld	C3H5CI	Biotite	K(Mg, Fu)3AIS/3O10(F, OH)2		Vinyl carbinol	CIH60	107-18-6	2 ppm	
I-Mercaptobutane	C4H10S	2-Propenamide	C3H5NO		Allylene	C3H4	Boron oxido Bromine Brumochlorometamie	Na28407+10H2O	- 13	Vinyl chloride	CZH9CI	75-01-4	1 ppm	5 p
1-Mercaptobutane	C4HIOS	2-Propenenitrile	CHIN		Allyigiycidylether	CRHIODS	Boron axida	B203	13	Vinylicyanide	C3H3N	107-13-1	2 ppm	10;
I-Mercaptobutane	C4H10S	2-Propenoic acid	C3H4O2		Alumina	AI2O3	Bromine	T\/ s2 \/	nw	ether	C4H6	106-99-0	I ppm	15;
1-Methyl-2-pyrrolidinone	CSH9NO	2-Proponol	C3H6O	- Y	Aluminium	AL	Bromothloromethine	CH28rCI V	ı yı	Vinyl toluene	C9H10	25013-15-4	100 ppm	
I-Propanethiol	C3H8S	2-Propyl acetate	CSH1002		Aluminum oxide	EC/SIA	Bromoethane	C2HSBr	7	Vinyl trichloride	C2H3C3	79-00-5	10 ppm	
1-Propanol	CJHBO	2-Propylamine	C3H9N		Aluminum trioxide	EDSIA	Bromoethene	C2H3Br	5	Vinylbenzene	CBHB	100-42-5	100 ppm	200
2'-Dichlorodiethyl ether	C4HBOCI2	2-Propyn-I-ol	C3H4O	t	Amino-benzene	C6H5NH2	Bromoethylene	C2H3Be	5	White spirit	85% Nonane/15% trimeth	W- B053-41-3	500 pem	0
2, 4-Dimethyl pentane	C7H16	2-Propynyl alcohol	C3H4D		Aminocyclohexane	C6H11NH2	Bromoform	CH8e3	- 7	Xylene (Isomers)	OBHIO	1330-20-7	100 ppm	
2,4-Dimethyl-3-pentanone	C7H14O	3-Amino-i-propanel	C3H5NO		Amnoethane	C2H7N	Butanoic acid	C4H8O2	- 1	Xyloi	C9HI0	103-38-3	50 ppm	
,6-Dimethyl-4-heptanone	C9H18O	3-Chloro-I-proper	\mathcal{M}	Th	lulene	CHSN	Butyl acrylate	C/H12O2	- 1	Zinc oxide	Z _r O	1314-13-2	15 mg/m3	
2-Amino I-propanol	C3H9NO	3-Cresol	CHEC Y		Ammonia	NH3	Butyl alcohol	C4HIDO	- 7	Zinc oxide	ZHU	1314-13-2	12 mgm3	
2-Amino butane	C4H9NH2	3-Hydroxytoluene	C7H8O	Ġ.	Ammonium chioride	NH4CI	Butyl alcohol sec	C4HIDO	- 1			ė.	4	
2-Amino pyridine	CSHENZ	3-Methoxy-3-methyl-1-butanol	C6H14C2	Ar	mmonium chioride (fumes)	NH4D	Butyl alcohol sec	C4HIDO	70-72-2	130 9011				
2-Aminoethanol	C2H7NO	3-Methyl phenol	C7H9O		Ammonium hydroxyde sol	NH4OH	Butyl alcohol ter	C4HIDO	75-65-0	100 ppm		1		
2-Aminopropane	C3H9N	3-Methyl-3-penten-2-one	CEHIDO		Amorphous silica	502	Butyl alcohol ter	CH202	75.12.7			1		
2-Butanol	C4H100	3-Octanone	C8H16O		Amyl alcohol n	CSHI2O	Butyl carbinol	CSH12O	71-41-0			1		
2-Butanone	C4H9O	3-Pentanone	CSHI00	An	hydrous hydrogen bromide	HBr	Butyl Cellosolve®	C6H14D2	111-76-2	50 ppm		1		
2-Butenal	C4H6O	4,4'-Bianiline	CBHI6N2		hydrous hydrogen bromide	HBr	Butyl ether	CBHIBO	142-96-1			1		
		4,4'-Biphenyidiamine	CBHI6N2	-	Anilino	C6H5NH2	Butyl glycidyl ether	C/H14D2	2426-08-6	50 ppm				
		4,4'-Diaminobiphenyl	CBHI6N2		Aqua fortis	HNOS	Butyl glycol	C6H14D2	111-76-2	50 ppm				
(2)		4-Aminotoluene	C7H9N		Aqua iorus	PRIOS .	Butyl lactate	C7H14C3	138-22-7			Til I		
		4-Cresol	C7H8O	106-4	44.5		Butyl metacrylate	CI8HI4O2	97-88-1			1		
		4-Hydroxytoluene	C7H9O	106-4			wasterness track				-I			

Chemical "Short List"

Not retained well:

- 1. Hydrogen
- 2. Helium and the Noble Gases
- 3. Methane
- 4. Ethane
- 5. Ethylene Oxide
- 6. Carbon Monoxide
- 7. Carbon Dioxide
- 8. Nitrogen Monoxide
- Propylene
- 10. Propyne, Propane
- 11. Acetylene

Not recommended:

- Perchloric Acid, Radioisotope or Acid Digestion Hoods
- Highly exothermic reactions
- Mercury Well retained but remains extremely toxic (TLV = 0.05 ppm) and difficult to detect
- Organophosphoric Compounds very high toxicity
- Hydrogen Cyanide -Immediately lethal

Filter Replacement/Disposal

- Standard PPE: Gloves and Glasses
- Secondary filter becomes primary, new secondary installed
- Old filter incinerated through your established process/vendor

Reduce First Costs

- Remove hood exhaust ductwork and airflow control device
- ➤ Reduce exhaust fan BHP
- Reduce make-up air (Cooling, Heating)

Reduce Operating Costs

- Reduced fan BHP on Supply and Exhaust
- Reduced cooling tonnage
- Reduced heating BTUs
- ➤ Increased \$\$\$ for facility improvements

Evaluation of Filtered Hoods

Comparison 1 st Cost NC Ducted vs. Filtered,	CV	VAV	VAV HP/LF	Filtered
Fume Hood, 6Ft, Vertical Sash ^{1,2}	\$10,000	\$10,000	\$12,000	\$25,000
Building Infrastructure: M-E-P, Lab Services & Data ^{0,3}	\$20,000	\$25,000	\$25,000	\$2,000
Total First Costs	\$30,000	\$35,000	\$37,000	\$27,000
Energy Costs/Year				
Exhaust Fans ⁴	\$1,367	\$911	\$711	\$293
Make-up Air (\$5/cfm) ⁵	\$6,000	\$4,000	\$3,120	\$0
Maintenance Costs/Year	\$1,200	\$1,500	\$1,500	\$1,800
Total Operating & Maintenance/Year	\$8,567	\$6,411	\$5,331	\$2,093

Cost comparison data prepared by Ellensweig Architects in collaboration with BR+A Consulting Engineers, R.W. Sullivan Engineering and Vanderweil engineers.

Footnotes to cost figures

The figures listed do not include potential savings due to reduced chiller capacity resulting in a lower chilled water load.

- Cost comparison is based on new construction and includes estimated costs per single 6 ft. fume hood with a vertical sash configuration and utility connections including compressed air, lab vacuum, natural gas, electrical power and data. (Exception – combo sash of HP hood)
- 2. National Grid and other local and national utility companies provide a first time equipment cost rebate of up to 70% of the difference in cost between a conventional constant volume bypass hood and a filtering green fume hood. (Energy rebate savings are not included in the figures listed above)
- 3. Estimated building infrastructure cost (M-E-P Data) per fume hood based on new building construction with approximately 100 fume hoods)

Footnotes to cost figures

- 4. Estimated electrical energy costs per year per fume hood.
 - Assumption: Fans will operate 24 hrs/day, 365 days/year, 8,760 hours/year at \$0.12kWh
 - Fan HP required 1HP/ 2 in. SP
 - Equivalent electrical load per NEC Article 430/full load current at 460 volts/3 phase/2.1 amps = 1.3 kWh
- 5. Estimated mechanical energy cost per year per fume hood:
 - 6' CV bypass (1,200 CFM x \$5.00/CFM/year=\$6,000)
 - 6' VAV (800 CFM x \$5.00/CFM/year=\$4,000)
 - 6" VAV HP hood (624CFM x \$5.00/CFM/year=\$3,120)
- 6. The cost savings illustrated above do not take into account possible additional cost savings associated with a reduced floor to floor height related to possible reduced HVAC ductwork.

New Construction Selection Matrix

Renovation Selection Matrix

Customer List

- AirBorn Interconnect
- Amway
- Antioch College
- Assinbione Zoo
- Babbitt School
- Bay Path Reg Voc-Tech HS
- Bridgestone Technical Center
- Broward College
- Butler Univ.
- Carmel Christian School
- Central Piedmont CC
- Chemtura
- Clemson Univ.
- Columbia Univ.
- Consumers Energy
- Cornell Equine Drug lab
- Covidien
- Crowder College
- Dorf Ketal Chemicals
- E.P. Scientific
- FBI Quantico

- Grand Prairie Reg. College
- Greenwood Lab School
- Harvard University
- HiRes BioSolutions
- Ivy Tech Comm College
- Khalifa Univ. of Science & Tech.
- L'Oreal Maybeline
- L'Oreal R&D
- Manildra Group USA
- Marietta College
- Marywood Univ.
- McMaster Univ. (twice!)
- Motiva Enterprises
- Murry State College
- New Mexico Consortium
- OPC Polymers
- Pace Analytical
- Pasco-Hernando State College
- Paul Smith's College
- Purdue Univ. Tech. Center
- Rock Valley College

- Roosevelt H.S.
- SEED School of Maryland
- SKB Environmental
- St. Cloud State Univ.
- St. Joseph's College
- St. Norbert College
- SUNY
- SW Texas Junior College
- Texas A & M
- Total Petrochemical
- Univ. of California
- Univ. of Florida
- Univ. of Rochester
- Univ. of Rochester
- Univ. of Chicago
- Univ. of Michigan
- Univ. of Texas
- Utica College
- W.L. Gore (twice!)
- Washington Univ.
- Yukon College ... and more...

Butler University, Gallahue Hall

Construction Costs

\$66,000

DUCTED FUME HOODS	COMPONENTS	COST/UNIT	UNITS	TOTAL
	Fume Hoods Ductwork, Lab Controls Upgrade to Building Supply & Exhaust	\$8,000 \$5,000 \$350,000	26 26 1 LS	\$208,000 \$130,000 \$350,000
	Systems		TOTAL	\$688.000

FILTERED FUME HOODS	COMPONENTS	COST/UNIT	UNITS	TOTAL
	Fume Hoods	\$22,000	26	\$572,000
	Ductwork, Lab Controls	\$50,000	1 LS	\$50,000
	Upgrade to Building Supply & Exhaust	0	1 LS	\$0
	Systems		TOTAL	\$622,000

10 Yr. Operating Costs

\$512,000+

DUCTED FUME HOODS	COMPONENT(S)	CFM / FUME HOOD	QTY OF FUME HOODS	TOTAL CFM	YEARLY COST / CFM	TOTAL YEARLY COST
	Fume Hood	744 CFM*	26	19,344	\$5	\$96,720
			10 Yr TOT	L AL OPEI	RATING	\$967.720

* Based on 60FPM face velocity at 28" sash height

FILTERED FUME HOODS	COMPONENT(S)	CFM / FUME HOOD	QTY OF FUME HOODS	TOTAL CFM	YEARLY COST / CFM	TOTAL YEARLY COST
	Filtered Fume	0 CFM	26	0	\$5	\$0
	Hood	CFM / PERSON	PERSONS	TOTAL CFM		
	Classroom Ventilation	50	104	5,200	\$5	\$26,000
		COST/ FUME HOOD	QTY OF FUME HOODS	TOTAL COST	FREQ. CHANGE	YEARLY COST
	Filter	\$3,000	26	\$78,000	4 Yrs	\$19,500
	Replacement		10 Yr TOTAL OPERATING			\$455,000

End Results 3 Years Later

- No capacity on exhaust system
- Addition of (9) hoods, (8) filtered
- Installed in August,2013

Acids & Solvents

- ➤ ELECTROPHORESIS
- FILTRATION
- > PIPETTING
- ➤ ANALYSIS
- ➤ HISTOLOGY

Reference: GFH-148US45-0113

Source:

Client: MCMASTER UNIVERSITY

,

GFH Approval Level: 1-4

1 Containment	Approved
2 Detection	Approved
3 Neutrodine Compatibility	Approved
4 Neutrodine Estimated Life Expectancy	Approved

Comments

This application is totally compatible with GFH. The chemicals are perfectly trapped and detectable. We can recommend a GFH without any limitation. The filter life time will exceed two years.

Cedric Herry (PhD) R&D Manager

- Russ Ellis, M. Sc. Lab Coordinator, Integrated Science Program
 - "The GFH's serve our needs incredibly well..."
 - "Biggest battle was convincing Safety Dpt that GFH was as safe as traditional ducted hoods. We finally did convince them."
 - Face velocities are lower, not meeting McMaster's standard of 100fpm.

"A real big plus is the ability to have one hood fully accessible by installing it on an adjustable-height

"In summary, the hoods look great, save energy and money and allow students to work safely."

Bridgestone Technical Center

- Tested filtered hood for 20 months with over 300 chemicals
- Purchased 11 more
- \$5,000 annual energy savings per hood (\$60k/yr total)

U of Rochester - Hutchinson Hall

- Operating costs savings: \$136,100 annually
- 300% increase in hoods!

- > NYSERDA rebate: \$36.6k
- ➤ GFH portion: \$12,975 (capital incentive)
- ➤ kWh Savings: 32,727
- ➤ Peak Reduction: 110.5 kWh
- ➤ Fuel Savings: 8,233 Therms

FINAL THOUGHTS, IMAGINE:

- Not treating waste water, letting it run into the streets.
- ➤ Throwing solid waste along the highway or in the river.
- Pouring your dirty oils or solvents directly on the ground?

Pollution is Pollution regardless of dilution!

www.erlab.com

USA

Tel.: +1 (978) 948-2216

Fax: +1 (978) 948-3354

E-mail: captairsales@erlab.com