top of page

Abstracts
Sustaining the Industry for the Next Generation

The 2024 SLCan Conference Committee is exploring the following topics as the focus of this year's conference:

  1. DEI – Accessibility and Inclusion in Labs

  2. Reduction in Embodied Carbon and Net Zero Goals

  3. From Incubation to Commercialization

  4. Greening Operations and Policies

Plenary Stream_ Accessibility and Inclusion in Laboratories.png

Equity-based Accessibility Standards Driving Change for Inclusion

Dino Zuppa, Accessibility Standards Canada

The objective of this presentation is to provide information on the development of inclusive accessibility research and standards development being led by individuals with disabilities and other equity seeking groups, as well as to provide specific examples how equity-based accessibility standards can open opportunities and inclusion for underrepresented groups.

The presentation will focus on four key messages: 1. How Accessibility Standards Canada involves people with disabilities and other equity seeking groups in its standards development process and funded research; 2. How can remove barriers in the built environment; 3. How accessibility standards can drive change in policies and practices to increase inclusion of underrepresented groups in organizations; and 4. How equity-based standards can eliminate or reduce request for accommodations and reduce disclosure for people with disabilities. Accessibility Standards Canada (ASC) was created through the Accessible Canada Act to develop accessibility standards, fund research to support the development of next-generation accessibility standards and help to contribute to a barrier free Canada by 2040. In 2022, approximately 8 million Canadians reported having one or more disabilities that limited them in their daily activities. ASC is spearheading the development of inclusive accessibility research and standards development, which is being led by individuals with disabilities and other equity seeking groups. Over 10,000 people with disabilities have participated in different capacities (researchers, advisors, etc.) in ASC grants and contribution funded research projects. Our standards are developed from the ground up using an intersectional approach to ensure everyone can fully participate and to ensure that the intersecting barriers that people with disabilities face are addressed through our standards. Technical committees are led by persons who identify with equity seeking groups such as people with disabilities, women, Indigenous, visible minorities and LGBTQ2+ communities. ASC has set the industry benchmark for inclusion, diversity, equity, and accessibility. Over 50% of participants in the ASC technical committees identify as persons with disabilities and an additional 50% identify as other equity seeking groups based on gender, ethnic background, etc. This presentation is intended to highlight how equity-based accessibility standards can attract expertise and talent from underrepresented groups to businesses and organizations. This entails placing accessibility, diversity and inclusion at the forefront of standards development which removes barriers in the built environment and design of an organizations processes, policies and systems. The presentation will also touch upon specific examples of world leading accessibility standards in the areas of the built environment, wayfinding and signage, emergency egress and emergency measures, employment, artificial intelligence, procurement and information and communication technologies, acoustics and design of programs and services. ASC develops these equity-based standards that go beyond minimum requirements and makes them available free to anyone in Canada and internationally. The presentation will also highlight how eliminating accessibility barriers can reduce or eliminate requests for accommodations in certain areas and reduce the need for people with disabilities.

L’inclusion repose sur des normes d’accessibilité fondées sur l’équité

L’objectif de cette présentation est de fournir des informations sur le développement de la recherche et des normes d’accessibilité inclusives que mènent des personnes en situation de handicap et d’autres groupes en quête d’équité. Fournir des exemples précis de la manière dont les normes d’accessibilité fondées sur l’équité peuvent ouvrir des perspectives et favoriser l’inclusion des groupes sous représentés.

La présentation s’articulera autour de quatre principaux thèmes : 1.La participation des personnes en situation de handicap et d’autres groupes en quête d’équité dans le processus d’élaboration des normes et dans la recherche que Normes d’accessibilité Canada finance; 2.L’élimination des obstacles dans l’environnement bâti; 3.L’utilisation de normes d’accessibilité pour favoriser le changement dans les politiques et les pratiques afin d’accroître l’inclusion des groupes sous représentés dans les organisations; et, 4.L’établissement de normes fondées sur l’équité peut éliminer ou réduire les demandes de mesures d’adaptation et réduire la nécessité pour les personnes en situation de handicap d’avoir à divulguer leur handicap. La Loi canadienne sur l’accessibilité a permis la création de Normes d’accessibilité Canada (NAC). L’organisme élabore des normes d’accessibilité, finance la recherche afin de soutenir l’élaboration de la prochaine génération de normes d’accessibilité et contribue à la réalisation d’un Canada sans obstacle d’ici 2040. En 2022, environ 8 millions de Canadiens ont déclaré avoir un ou plusieurs handicaps qui les limitent dans leurs activités quotidiennes. Normes d’accessibilité Canada mène le développement de la recherche sur l’accessibilité inclusive et l’élaboration de normes que dirigent des personnes en situation de handicap et d’autres groupes en quête d’équité. Plus de 10 000 personnes en situation de handicap ont participé de différentes manières (chercheurs, conseillers, etc.) à des projets de recherche que Normes d’accessibilité Canada a financés avec des subventions et des contributions. Nous élaborons des normes en utilisant une approche intersectionnelle dès le point de départ. Cette démarche nous permet de nous assurer que toutes les personnes peuvent participer pleinement à l’élaboration de normes. Elle nous permet aussi de faire en sorte que nos normes tiennent compte des obstacles interreliés auxquels les personnes en situation de handicap sont confrontées. Des personnes qui s’identifient à des groupes en quête d’équité dirigent nos comités techniques. Ces groupes comprennent les personnes en situation de handicap, les femmes, les autochtones, les minorités visibles et les communautés LGBTQ2+. Normes d’accessibilité Canada sert de modèle en ce qui a trait à l’inclusion, la diversité, l’équité et l’accessibilité. Plus de 50 % des participants aux comités techniques de NAC s’identifient comme personnes en situation de handicap et 50 % s’identifient comme appartenant à d’autres groupes en quête d’équité, en raison de leur sexe, de leur origine ethnique, etc. La présentation souligne comment les normes d’accessibilité fondées sur l’équité peuvent attirer l’expertise et le talent des groupes sous-représentés dans les entreprises et les organisations. Ces normes placent l’accessibilité, la diversité et l’inclusion au premier. Elles permettent ainsi d’éliminer les obstacles dans l’environnement bâti et la conception des processus, des politiques et des systèmes d’une organisation. La présentation abordera aussi des exemples précis de normes d’accessibilité reconnues mondialement dans de nombreux domaines incluant l’environnement bâti, l’orientation et la signalisation, les sorties d’urgence et les mesures d’urgence, l’emploi, l’intelligence artificielle, l’approvisionnement, les technologies de l’information et de la communication, l’acoustique, et la conception de programmes et de services. Les normes fondées sur l’équité que Normes d’accessibilité Canada élabore vont au-delà des exigences minimales. L’organisation les met gratuitement à la disposition de tous au Canada et dans le monde. La présentation soulignera également comment l’élimination des obstacles à l’accessibilité peut réduire ou éliminer les demandes pour des mesures d’adaptation dans certaines circonstances et réduire la nécessité pour les personnes en situation de handicap d’avoir à divulguer leur handicap.

Dino Zuppa.jpg

Dino Zuppa, Chief Operating Officer, Accessibility Standards Canada Dino Zuppa oversees the development of equity-based accessibility standards supported by pioneering research funded by Accessibility Standards Canada's grants and contributions program. Dino's career spans more than 25 years. He led a number of strategic initiatives at all orders of government in Canada, and at an American University.

The Approach to Accessibility and Inclusion at the Atlantic Science Enterprise Centre

Dean Collier, Public Services and Procurement Canada
Lisa Tondino, Public Services and Procurement Canada

The objective of the presentation is to discuss the approach taken by the Government of Canada and the Diamond Schmitt design consultant team with regards to the design and construction of laboratories for federal science.

Presenting the Accessibility and Inclusion approach at the Atlantic Science Enterprise Centre (ASEC) project provides an important opportunity to discuss both the broad Government of Canada accessibility direction as well as its application to this Laboratories Canada project. It also allows us to raise awareness of accessibility and inclusion initiatives within the Government of Canada to a broader audience of laboratory users and lab design specialists and, though discussion with industry experts, for us to gain a better understanding of current and upcoming trends in laboratory design that can be applied to other federal government projects. Until recently, most federal government laboratory projects have suffered from a lack of guidelines such as the Repeatable Laboratory Design Framework (RLDF) developed by Laboratories Canada, and were simply labeled as Special Purpose Space without any clear direction on accessibility available. Government of Canada accessibility initiatives and lab design guides such as the RLDF need to be promoted to show that the Canadian government is dedicated to the improvement of science delivery for Canadians and to the recruitment and retention of top talent in the science fields from the broadest range of individuals.

L'Approche d'accessibilité et d'inclusion au projet du Centre d'entreprise scientifique de l'Atlantique

L’objectif de cette présentation est de discuter de l’approche adoptée par le gouvernement du Canada et l’équipe de consultants en conception Diamond Schmitt en ce qui concerne la conception et la construction de laboratoires scientifiques fédéraux.

La présentation de l'approche d'accessibilité et d'inclusion au projet du Centre d'entreprise scientifique de l'Atlantique (CESA) offre une occasion importante de discuter à la fois la direction générale du gouvernement du Canada en matière d'accessibilité ainsi que de son application à ce projet de Laboratoires Canada. Cela nous permet également de sensibiliser les initiatives d'accessibilité et d'inclusion au sein du gouvernement du Canada à un public plus large d'utilisateurs de laboratoire et de spécialistes de la conception de laboratoire et, grâce à des discussions avec des experts de l'industrie, de mieux comprendre les tendances actuelles et à venir pour la conception de laboratoire qui peut être appliquée à d’autres projets du gouvernement fédéral. Jusqu'à récemment, la plupart des projets de laboratoires du gouvernement fédéral souffraient d'un manque de lignes directrices telles que le cadre de conception de laboratoire reproductible (« RLDF ») développé par Laboratoires Canada, et étaient simplement identifiés comme espace à usage spécial sans aucune directive claire sur l'accessibilité disponible. Les initiatives d'accessibilité du gouvernement du Canada et les guides de conception de laboratoires tels que le « RLDF » doivent être promus pour montrer que le gouvernement canadien se consacre à l'amélioration de la prestation des sciences pour les Canadiens et au recrutement et à la rétention des meilleurs talents dans les domaines scientifiques du plus large éventail d’individus.

Dean Collier_Headshot(1).jpg

Dean Collier, Senior Architect (Atlantic Region), Architecture & Engineering Resource, Public Services and Procurement Canada Dean Collier started with Public Services and Procurement Canada (PSPC) as a Project Architect for the Atlantic Region in 2016. As a licensed architect and member of the Nova Scotia Association of Architects (NSAA), Architects’ Association of Prince Edward Island (AAPEI), and the Royal Architectural Institute of Canada (MRAIC), he holds a Master’s Degree in Architecture from Dalhousie University (formerly TUNS). Prior to joining PSPC, Dean was with the Department of National Defence from 2005 to 2016, serving as the architectural team manager at CFB Halifax. There he was part of a team managing the upkeep of approximately $2 billion in assets ranging in age from the 1800’s to new construction. From 1996 to 2005, Dean worked in the private sector with a multi-discipline consulting design firm in Halifax, NS providing design services to private clients as well as various levels of government. Dean has had a special interest in accessibility since his early experience in the private sector and has continued to focus on its incorporation into design and renovation work throughout his career.

Lisa Tondino Headshot.jpg

Lisa Tondino, Accessibility Resource and Architect (Atlantic Region), Architecture & Engineering Resource, Public Services and Procurement Canada Lisa Tondino started with Public Services and Procurement Canada (PSPC) as a Project Architect for the Atlantic Region in 2020. As a licensed architect and member of the Nova Scotia Association of Architects (NSAA), she holds a Master’s Degree in Architecture from Dalhousie University. Prior to joining PSPC, Lisa was the principal architect of her own firm since 2009. Her architectural work won many awards with projects appearing in numerous articles and publications. Before embracing the challenges of her own practice, Lisa worked in the private sector for over ten years. In 2019 Lisa became a Rick Hansen Certified Professional. Lisa’s involvement with accessibility is as a resource for PSPC staff and other government departments. Lisa shares the role in accessibility with her PSPC colleague Martin Mikkelson.

Empower, Embrace, Include:
Diversity, Inclusivity and Accessibility in Laboratory Spaces

Sakshi Misra, Architecture | 49
Marco Garcia, Architecture | 49
Additional presenter TBC

The objective of the presentation is to help the audience understand the broader implications for diversity, inclusivity and accessibility in laboratory environments and how Rick Hansen Certification can assist with the integration of the key principles.

Diversity, inclusivity and accessibility in laboratory planning and design are critical success factors for today's scientific environments. This presentation explores key principles and strategies for integrating diversity, inclusivity and accessibility into laboratories with a focus on universal design that empowers, embraces and accommodates researchers of varying abilities. We will discuss current standards, ergonomic considerations, and real-world examples to highlight the importance of spatial organization, adaptive technologies, and flexible environments. A significant aspect of our discussion is the Rick Hansen Accessibility Certification (RHFAC), which provides a robust framework for assessing and enhancing diversity, inclusivity and accessibility in laboratory settings. The latest version of the Rick Hansen Professional Handbook (V4.0) now includes elements specific to laboratory environments, offering detailed guidelines and criteria tailored to the unique needs of these spaces. We'll examine how RHFAC V4.0 guides best practices and offers tangible benchmarks, demonstrating its impact on creating equitable laboratory spaces. This presentation will include RHFAC case studies from the UBC School of Biomedical Engineering project (Gold) and the BCIT Trades and Technology project (in progress) illustrating how these principles and certifications are being successfully implemented in real-world settings. These examples will provide attendees with practical insights into the benefits of diverse, inclusive and accessible laboratories that enhance productivity, safety, and collaboration.

Sakshi Misra.jpg

Sakshi Misra, Architect, Architecture | 49 Sakshi Misra is an architect with valuable technical knowledge of building systems and construction methods. Her work throughout each phase of her projects exemplifies the value of careful design and consideration of client and user group requirements. Detail-oriented and hard-working, Sakshi has experience with a variety of Science and Technology projects, of varying programs and complexities. She offers strong attention to detail, great teamwork and coordination abilities. Her clients especially appreciate her responsiveness during the construction phases of technical and time sensitive projects.

Marco Garcia, Architect, Architecture | 49 Marco Garcia, M.Arch, MAA, is an Architect at Architecture49 for 6 years working extensively with in the science and technology sector on a wide variety of laboratory typologies. Marco works with multidisciplinary teams to respond to requirements of scientific processes, work-flows and to develop solutions to optimize the use of space and equipment in the context of sustainable whole building design. Marco has been recently involved in a number of successful LEED laboratory projects. Marco is an approachable and dynamic team member who actively listens and understands the core issues before putting forward creative and innovative design alternatives.

Stream 1A_ Reduction in Embodied Carbon and Net-zero Goals.png

Safe and Efficient VAV Exhaust Systems:
University of Alberta Case Study

Jordan Beardy-Singh, Cermak Peterka Petersen Wind Engineering Consultants
Additional presenter TBC

The objective of this presentation is to provide the audience with a better understanding of how to identify potential candidates for VAV exhaust implementation, the different approaches to ensure the system is both safe and energy efficient, and what to expect from a project of this nature.

It is no surprise that laboratory and research spaces have significant energy requirements. Relative to traditional office buildings, buildings with research space can use upwards of 10x more energy per sqft. Approximately 30% of this energy may be consumed by the laboratory exhaust system. Optimizing this aspect of a building's operation can ensure occupant safety, reduce O&M costs, and reduce a buildings operational carbon footprint. We will investigate strategies for implementing safe and effective VAV exhaust system designs. In this presentation we will take a closer look at the implementation of VAV exhaust systems at the University of Alberta as part of large project implementing the Smart Labs Toolkit. The project starts with an initial level 1 engineering audit of the campus laboratories to identify buildings with large laboratory HVAC systems, coordination with facilities staff to verify assumptions, gather specific design details, and collect trend data from building management systems. This data was used to conduct an initial feasibility assessment to estimate potential energy savings if VAV exhaust systems are implemented. This information can be used by the owner and design teams to justify pursuing further analysis. After identifying viable candidates, we will move into the detailed analysis. Using wind tunnel dispersion testing, the performance of exhaust systems were characterized for a wide range of meteorological conditions. This data is used to determine the minimum safe operating point for the exhaust fans. When this is combined with the building exhaust demand, exhaust flows can be minimized while ensuring a threshold of safety for occupants. Finally, we will look at the implementation process; typical project duration, what types of disruptions can be expected during implementation, and how does each step of the analysis align with the actual operation of the exhaust systems. After attending, the audience should have a better understanding of how to identify potential candidates for VAV exhaust implementation, the different approaches to ensure the system is both safe and energy efficient, and what to expect from a project of this nature.

Jordan Beardy-Singh - Headshot.jpg

Jordan Beardy-Singh, Project Consultant, Cermak Peterka Petersen Wind Engineering Consultants Jordan Beardy-Singh has been an air quality consultant since 2017 and has supported the success of client building performance objectives using wind tunnel and numerical modeling for exhaust dispersion analyses. His work spans numerous industries including healthcare, higher education, and laboratories.

A Comprehensive Approach to Decarbonizing Critical Environments

Dan Diehl, Aircuity, Inc.
Ian McDermott, University Health Network

The objective of this presentation is to educate the audience on how airflow optimization can be implemented in many types of critical spaces to help achieve net zero goals and healthier IAQ for occupants. It will be done using case studies and real data from projects.

Airflow optimization is among the most impactful measures available for reducing carbon emissions and energy consumption in critical environments within your building portfolio. It not only delivers significant carbon reductions in labs but also proves to be just as, if not more, impactful in vivarium and cleanroom spaces. Adopting a comprehensive approach and implementing it across all applicable critical environment spaces will facilitate a significant contribution toward the company’s established carbon goals. This presentation will delve into the decarbonization strategies tailored for labs, vivaria, and cleanrooms of ISO 7 and higher, supported by case studies and real customer data.

Dan Diehl.jpg

Dan Diehl, CEO, Aircuity, Inc. Dan Diehl is currently Chief Executive Officer of Aircuity and Managing Partner of Thrive Buildings, a turnkey lab airflow optimization company. He has over 25 years of industry expertise across a wide variety of vertical markets and disciplines in commercial and light industrial building markets. Prior to Aircuity and Thrive, he led business development at Lutron Electronics, was a Partner for six years with Synergy and also spent 11 years at Johnson Controls, Inc. Dan holds a BSME from the University of Maryland and an MBA from Villanova University.

McDermott,I_UHN3537a.jpg

Ian McDermott, Executive Director, Redevelopment and Chief Planning Officer, FM-PRO, University Health Network Ian McDermott is the Executive Director, Redevelopment and Chief Planning Officer, FM-PRO, University Health Network (www.UHN.ca) in Toronto, Ontario, Canada. In his current roles, Ian works with clinicians, service providers, design teams, constructors and all levels of government in managing and creating innovative environments for clinical and academic healthcare, research and education. Ian and his team are project, space and clinical/scientific interpreters, translating needs and concepts between the all the users and the design/operational teams. Ian was a founding member of the SLCan Board of Directors and the 2nd President, holding that position for 2 terms.

Stream 2A_ Reduction in Embodied Carbon and Net-zero Goals.png

Laboratoire en ouverture et transparence

Deirdre Ellis, NFOE inc.

Le but de cette présentation est de démontrer qu'il est possible de construire des laboratoires aux qualités spatiales exceptionnelles sans compromettre les efforts de lutte aux changements climatiques.

Le présent projet soutient la recherche scientifique et la croissance au Canada, en facilitant la production de vaccins de type ARN. L'implantation consiste en une construction unique de 6600 m² sur un terrain de 50 000 m². Le processus de conception a débuté par l'élaboration et l'adaptation d'un projet agnostique développé par le client, en collaboration avec les utilisateurs du bâtiment, pour répondre à leurs besoins spécifiques. Les espaces de travail, qu'il s'agisse de laboratoires, de zones de production ou de bureaux, sont tous situés au rez-de-chaussée, facilitant ainsi l'accessibilité pour les personnes à mobilité réduite. Ce projet met une forte emphase sur les objectifs de carboneutralité et l'écologisation des opérations. Dès la phase de conception, des stratégies ont été intégrées pour minimiser l'empreinte environnementale et atteindre les objectifs de réduction du carbone intrinsèque. La sélection de matériaux durables et à faible impact carbone a été une priorité, de même que l'optimisation des processus de construction pour réduire les émissions. Les cloisons intérieures vitrées, en plus d'offrir une transparence et un effet d'ouverture favorisant la collaboration, sont fabriquées à partir de matériaux recyclés et recyclables. L'éclairage naturel est maximisé grâce à un puits de lumière central, réduisant la dépendance à l'éclairage artificiel et contribuant ainsi à la réduction des coûts énergétiques et des émissions de gaz à effet de serre. Des simulations énergétiques ont montré une diminution de 44,5 % des coûts liés à la consommation énergétique et des émissions de gaz à effet de serre, ce qui est essentiel pour atteindre les objectifs de carboneutralité du projet. Les espaces de travail sont conçus pour être non seulement attractifs, ouverts et lumineux, mais également durables. Ces espaces ont été aménagés de manière à attirer et à retenir les meilleurs scientifiques, en offrant un environnement de travail de haute qualité. Les matériaux utilisés dans les espaces communs et de travail intègrent des éléments naturels, améliorant le bien-être des occupants. Les aires de travail et les zones communes situées en périphérie du bâtiment offrent des vues sur des aménagements paysagers extérieurs, et la façade principale bénéficie de vues panoramiques sur la région métropolitaine, intégrant ainsi le bâtiment dans son environnement naturel. La durabilité étant au cœur des préoccupations de ce projet, une certification LEED est visée. Parmi les stratégies durables employées, on trouve la réduction de la consommation d'eau intérieure et extérieure, l'amélioration de la qualité de l'air intérieur, l'adaptabilité du design, la réduction de la pollution lumineuse, la gestion des eaux pluviales sur site, ainsi que la diminution des îlots de chaleur, qui est une priorité régionale. L'écologisation des opérations comprend également des systèmes de gestion énergétique de pointe et des pratiques visant à réduire l'empreinte carbone au quotidien, tout en exploitant les laboratoires de manière efficace et durable. Ce projet n'est pas seulement un centre de production de vaccins, mais également un modèle de construction durable visant la carboneutralité. En soutenant la recherche scientifique et la croissance au Canada, et en aménageant des espaces attractifs pour les meilleurs scientifiques, ce projet se positionne comme un exemple d'excellence en matière de développement durable et d'écologisation des opérations.

Laboratory Openness and Transparency

The objective of this presentation is to demonstrate that it is possible to build laboratories with exceptional spatial qualities without compromising efforts to combat climate change.

This project supports scientific research and growth in Canada, by facilitating the production of RNA-type vaccines. The project consists of a single 6600 m² building on a 50,000 m² site. The design process began with the elaboration and adaptation of an agnostic project developed by the client, in collaboration with the building's users, to meet their specific needs. The workspaces, whether laboratories, production areas or offices, are all located on the first floor, facilitating accessibility for people with reduced mobility. The project places a strong emphasis on carbon neutrality and greening operations. Right from the design phase, strategies were integrated to minimize the environmental footprint and achieve intrinsic carbon reduction targets. Selecting sustainable, low-carbon materials was a priority, as was optimizing construction processes to reduce emissions. In addition to providing transparency and openness for collaboration, the interior glazed partitions are made from recycled and recyclable materials. Daylighting is maximized through a central skylight, reducing reliance on artificial lighting and helping to cut energy costs and greenhouse gas emissions. Energy simulations have shown a 44.5% reduction in energy consumption costs and greenhouse gas emissions, which is essential to achieving the project's carbon neutrality objectives. The workspaces are designed to be not only attractive, open and bright, but also sustainable. These spaces have been designed to attract and retain the best scientists, offering a high-quality working environment. The materials used in the common and work areas incorporate natural elements, enhancing the well-being of occupants. Work and common areas on the periphery of the building offer views of outdoor landscaping, and the main façade enjoys panoramic views of the metropolitan area, integrating the building into its natural surroundings. With sustainability at the heart of the project, LEED certification is the goal. Sustainable strategies employed include reducing indoor and outdoor water consumption, improving indoor air quality, design adaptability, reducing light pollution, on-site storm water management, and reducing heat islands, which is a regional priority. Greening operations also includes state-of-the-art energy management systems and practices to reduce the carbon footprint on a day-to-day basis, while operating the laboratories efficiently and sustainably. This project is not only a vaccine production center, but also a model of sustainable construction aimed at carbon neutrality. By supporting scientific research and growth in Canada, and creating attractive spaces for the best scientists, this project is positioned as an example of excellence in sustainable development and greening of operations.

Deirdre Ellis.jpg

Deirdre Ellis, Architecte, associée directrice, NFOE inc. Deirdre Ellis travaille chez NFOE depuis 2010 et est devenue associée en 2018. Elle est architecte spécialisée en conception durable, avec une expérience variée dans les projets institutionnels, de santé, de science et de technologie. Elle maîtrise les lignes directrices institutionnelles, les codes et la certification des bâtiments écologiques. Experte en développement durable, elle renforce les capacités de son entreprise en construction écologique, collabore avec des équipes pluridisciplinaires et dirige des ateliers de conception intégrée. Récemment, elle a aidé des clients industriels et pharmaceutiques à atteindre leurs objectifs de durabilité. **** Deirdre Ellis, Architect, Senior Principal, NFOE inc. Deirdre Ellis has worked at NFOE since 2010 and became a partner in 2018. She is an architect specializing in sustainable design, with varied experience in institutional, healthcare, science and technology projects. She is proficient in institutional guidelines, codes and green building certification. As a specialist in sustainable development, she works to strengthen her firms’ green building capabilities, collaborates with multidisciplinary teams and leads integrated design workshops. She currently works with industrial and pharmaceutical clients to help them achieve their sustainability goals.

Beyond Cat Videos:
Unveiling the Embodied Carbon in MEP Systems of Data Centres

Mary On, Introba

The objective of this presentation is to understand the proportion of embodied carbon emissions from MEP components and non-MEP components and how the choice of mechanical system affects the whole life carbon of a building.

As scientific research increasingly relies on analyzing large datasets, simulating complex models and using artificial intelligence to predict outcomes, there is a growing demand for digital infrastructure such as computer labs and data centres. Data centres have significant cooling requirements and is both energy and carbon intensive. While there have been extensive studies on the operational carbon of MEP (mechanical, electrical, plumbing) systems, there is still a lack of knowledge on the life cycle analysis of MEP systems’ embodied carbon. To understand the impact that the choice of mechanical system has on the embodied carbon of data centres over their life cycle, a hypothetical 200,000 ft2 data centre in Portland, Oregon, was created to compare the embodied carbon emissions of 3 mechanical cooling systems: Air-cooled chillers, evaporative cooling, and immersion cooling. The study compares the upfront embodied carbon emissions from MEP system against the building structure and envelope, as well as the embodied carbon from the maintenance, repairs and replacement of the MEP equipment over the building’s lifetime. The relative cost of each cooling system and embodied carbon reduction strategies will also be reviewed.

Mary_On.jpg

Mary On, Senior Associate, Introba Mary is a senior associate on the Science and Technology Team at Introba. With experience in sustainable mechanical design, Mary focuses on delivering lab facilities that are sustainable, practical and resilient by providing simple solutions to complex problems through her designs.

Stream 1B_ University Green Lab Operations.png

Greening Lab Operations Through Lab Culture and Lab Infrastructure at Three Canadian Universities

Kimberly John, McGill University
Chelsea Dalton, University of Toronto
Additional presenter TBC

The objective of this presentation is to demonstrate technical and behavioural leverage points for greening lab operations in tertiary education through 1) engagement and outreach to lab users, and 2) targeted improvements to procedures and infrastructure.

UPDATED ABSTRACT TO COME.

KIMBERLY JOHN headshot.JPG

Kimberly John, Sustainability Officer, Office of Sustainability, McGill University Kimberly John (MPhil Ecology and MSc Bioresource Engineering) is a Sustainability Officer at McGill’s Office of Sustainability working to integrate environmentally responsible practices in laboratories. Since 2022 she instituted engagement programs for the lab community and is now working with a broad coalition to develop systems to reduce and recycle lab waste university wide. Her background is in the conservation and applied research of aquatic ecosystems and coastal areas. She has several years’ experience in project and programme management and aims to build lasting bridges between people and ecosystems, between knowledge, practice and policy.

Chelsea Dalton, Project Manager, Sustainability Office, University of Toronto Chelsea Dalton is a Project Manager in the Sustainability Office at the University of Toronto. In this role, she is responsible for managing and implementing projects at the Sustainability Office. Chelsea works collaboratively across a broad range of departments and with multiple stakeholders to strengthen the Sustainability Office's projects and programs. Chelsea has over 10 years experience working in sustainability in the post-secondary sector. She has worked extensively on outreach, engagement, program management, and sustainability assessment in higher education. Chelsea holds an Honours BSc in Environmental Science from the University of Toronto Mississauga. She is a passionate advocate for sustainability in higher education and throughout the world at large.

Stream 2B_ Renovations_ Teaching Old Dogs New Tricks.png

Separate but Together
How Two Projects Harmonize Social Interaction with Scientific Discovery (Part 1)

Elizabeth Henson, Cancer Care Manitoba Research
Martin Kristensen, Diamond & Schmitt Architects

The objective of this presentation is to show, through the CCMR laboratory renovation project, how newly designed laboratory spaces can promote teamwork, transparency, and inclusion, improve safety and workflow, and encourage shared expertise through modular solutions to create a sustainable research and innovation community.

Cancer research has entered a new era. Now, researchers look at cancer at the single-cell level. Scientists can delete single genes from a cancer cell, and oncologists can sequence a cancer patient’s tumor and give a therapy targeted to their disease. CancerCare Manitoba Paul Albrechtsen Research Institute is located within the MacCharles Building at the Health Science Centre in Winnipeg. The Research Institute is informed by multi-disciplinary teams of basic and translational, clinical, and health services scientists work with cutting-edge technology platforms. The project is conceived as a complete refurbishment of levels 5 and 6 of the Research Institute with construction to occur in phases while the building is occupied, without interrupting or hindering ongoing research activities and operations. The reconfiguration and design of existing laboratories included programming and space planning to facilitate the translation of findings from the laboratory to the clinic through multidisciplinary collaborations. The renovation corrects existing safety issues by separating wet bench work from data analysis and administrative work. The newly designed laboratory spaces promote teamwork and encourage shared expertise through modular solutions and specialized systems that are flexible, easily reconfigured and re-assignable based on the changing needs of the individual lab groups. These new spaces will increase capacity and improve workflows. The labs are configured for maximum flexibility to accommodate diverse research practices, and the centrally located lounge - with a glazed stair connection to these labs - serves as a gathering space and interaction zone for scientists, clinicians and students alike. This expands collaboration and team-building spaces to facilitate communication within and between research teams for inclusivity.

Séparés mais ensemble
Comment harmoniser l'interaction sociale avec la découverte scientifique (partie 1)

L'objectif de cette présentation est de montrer, à travers le projet de rénovation des laboratoires du CCMR, comment des espaces de laboratoire nouvellement conçus peuvent promouvoir le travail d'équipe, la transparence et l'inclusion; améliorer la sécurité et le flux de travail; et encourager le partage d'expertise grâce à des solutions modulaires pour créer une communauté de recherche et d'innovation durable.

La recherche sur le cancer est entrée dans une nouvelle ère. Aujourd'hui, les chercheurs étudient le cancer au niveau de la cellule unique. Les scientifiques peuvent supprimer un seul gène d'une cellule cancéreuse et les oncologues peuvent séquencer la tumeur d'un patient cancéreux et lui administrer une thérapie ciblée sur sa maladie. CancerCare Manitoba Paul Albrechtsen Research Institute est situé dans le bâtiment MacCharles du Centre des sciences de la santé à Winnipeg. L'Institut de Recherche s'appuie sur des équipes multidisciplinaires de chercheurs en sciences fondamentales et translationnelles, de cliniciens et de spécialistes des services de santé, qui travaillent avec des plateformes technologiques de pointe. Le projet est conçu comme une rénovation complète des niveaux 5 et 6 de l'Institut de recherche. La construction doit se dérouler par phases pendant que le bâtiment est occupé, sans interrompre ni entraver les activités de recherche et les opérations en cours. La reconfiguration et la conception des laboratoires existants comprennent la programmation et l'aménagement de l'espace pour faciliter l'application des résultats du laboratoire à la clinique par le biais de collaborations multidisciplinaires. La rénovation corrige les problèmes de sécurité existants en séparant le travail en laboratoire de l'analyse des données et du travail administratif. Les espaces de laboratoire nouvellement conçus favorisent le travail d'équipe et encouragent le partage d'expertise grâce à des solutions modulaires et des systèmes spécialisés qui sont flexibles, facilement reconfigurables et ré-assignable en fonction de l'évolution des besoins des différents groupes de laboratoire. Les laboratoires sont configurés pour une flexibilité maximale afin de s'adapter aux diverses pratiques de recherche. Le salon central, avec un escalier vitré menant à aux laboratoires, sert d'espace de rassemblement et de zone d'interaction pour les scientifiques, les cliniciens et les étudiants. Les espaces de collaboration et de constitution d'équipes sont ainsi élargis pour faciliter la communication au sein des équipes de recherche et entre elles, dans un souci d'inclusivité.

Elizabeth Henson.png

Elizabeth Henson, Cancer Care Manitoba Research Bio to come

Martin Kristensen.jpg

Martin Kristensen, Project Manager, Diamond & Schmitt Architects Martin Kristensen has over 20 years of experience with Diamond Schmitt Architects. His portfolio has focused on the design and construction of complex laboratory and research facilities. In addition to the renovations for the Notch Therapeutics and Cancer Care Manitoba Research Institute Refresh, he has contributed to several innovative projects bringing a dedicated design sensibility to his extensive knowledge in laboratory planning.

Separate but Together
How Two Projects Harmonize Social Interaction with Scientific Discovery (Part 2)

Momir Bosiljicic, Notch Therapeutics
Catherine Lin, Diamond & Schmitt Architects

The objective of this presentation is to show, through this brand-new fit-out laboratory facility project, how newly designed laboratory spaces can promote teamwork, transparency, and inclusion, improve safety and workflow, and encourage shared expertise through modular solutions to create a sustainable research and innovation community.

Notch Therapeutics is a research, development and production institution devoted in developing adoptive synthetic T cells to further the advancement of cellular immunotherapies for patients with broadened applicability and accessibility. With offices in Vancouver, Seattle and Toronto, the project is a brand-new fit-out laboratory facility with focus on process development and preclinical science, located within the existing mixed-use MaRS complex at the center of a network integrating healthcare, technology and innovation in Toronto. Notch had first approached the design team with a preliminary equipment list and a preliminary functional program requirement wish list to fit into the limited footprint of a leased space. It was through countless working sessions with Notch during design phase to refine the functional program, to understand the required sequence of workflow and sharing their core values that guide their day-to-day operation: collaborative, motivated & ingenious, a space full of light, transparency and workflow fluidity was created as an end result. The extensive use of full height glazed partition between laboratories blurred the physical separation/ barrier between wet and dry laboratories, enhanced communication and promoted collaboration between adjacent laboratories. Furthermore, the high visibility into multiple laboratories featured in the project had alleviated safety concerns common in laboratories, where scientists working independently are no longer feeling isolated. It is now a place where Notch’s scientists can work and live up to Notch’s core values, and happily devote to the valuable research and development work.

Séparés mais ensemble
Comment harmoniser l'interaction sociale avec la découverte scientifique (partie 2)

L'objectif de cette présentation est de montrer, à travers d’une toute nouvelle installation de laboratoire, comment des espaces de laboratoire nouvellement conçus peuvent promouvoir le travail d'équipe, la transparence et l'inclusion; améliorer la sécurité et le flux de travail; et encourager le partage d'expertise grâce à des solutions modulaires pour créer une communauté de recherche et d'innovation durable.

Notch Therapeutics est une institution de recherche, de développement et de production qui se consacre au développement de cellules T synthétiques adoptives afin de faire progresser les immunothérapies cellulaires pour les patients avec une applicabilité et une accessibilité accrue. Avec des bureaux à Vancouver, Seattle et Toronto, le projet est une toute nouvelle installation de laboratoire axée sur le développement de processus et la science préclinique. Ce dernier est situé dans le complexe MaRS à usage mixte existant, au centre d'un réseau intégrant les soins de santé, la technologie et l'innovation à Toronto. Notch a d'abord approché l'équipe de conception avec une liste préliminaire d'équipements et une liste préliminaire d'exigences fonctionnelles devant s'adapter à l'empreinte limitée d'un espace loué. C'est grâce à d'innombrables séances de travail avec Notch durant la phase de conception, afin d'affiner le programme fonctionnel, de comprendre la séquence de travail requise et de partager les valeurs fondamentales qui guident leur fonctionnement quotidien : collaboration, motivation et ingéniosité, qu'un espace plein de lumière, de transparence et de fluidité de travail a été créé comme résultat final. L'utilisation intensive de cloisons vitrées sur toute la hauteur entre les laboratoires a permis d'estomper la séparation physique entre les laboratoires secs et humides, d'améliorer la communication et de promouvoir la collaboration entre les laboratoires adjacents. En outre, la grande visibilité des multiples laboratoires présentés dans le cadre du projet a permis d’atténuer les préoccupations en matière de sécurité qui sont courantes dans les laboratoires, où les scientifiques travaillant de manière indépendante ne se sentent plus isolés. C'est maintenant un endroit où les scientifiques de Notch peuvent travailler et respecter les valeurs fondamentales de Notch; ils peuvent désormais se consacrer avec plaisir aux précieux travaux de recherche et de développement.

Momir Bosiljcic.jpg

Momir Bosiljicic, Notch Therapeutics Bio to come.

Catherine Lin.jpg

Catherine Lin, Project Architect, Diamond & Schmitt Architects Catherine Lin has over 16 years of experience with Diamond Schmitt Architects. Catherine's expertise on varying type and scale of projects and delivering methods is vast and interesting, as it included large complex government buildings, libraries, museums, post-secondary academic teaching facilities, campus renewal/expansions, student residences to research laboratory facilities. Her passion for design and attention to details are apparent without compromises on functionality as well as delivering projects on time and on budget.

Catalytic Converter
Regenerating Old Facilities through New Environments

Mark Wronski, Cumulus Architects Inc.
Paul Szaszkiewicz, Cumulus Architects Inc.
Additional Presenter TBC

What’s the shortest route to achieving embodied carbon reduction and net zero goals? The adaptive reuse, conversion, and renovation of existing facilities to support new and improved functions and performance. It's no contest.

The objective of the presentation is to share the analysis of the design approach and solutions for two EM laboratory projects in Toronto will not only prove the wisdom of the adage but will provide practical insight into key contributors to building resilience that can be applied to other lab conversions at scale.

The lab renewal projects at the SickKids Research Facility for their Titan Krios EM in 2017 and the Temerty Medical Sciences Building’s Glacios 2 EM in 2024 will illustrate the opportunities, and how to overcome the challenges, of designing new, state of the art lab environments in legacy facilities. The increased expectations for the quality and reliability of scientific research and innovation depends on the relentless improvement in the capacity and resolution of the instruments that serve them. The optimal performance of these instruments relies on increasingly technical environments that isolate and mitigate the external macro environmental, and ambient energy conditions found in the buildings, and urban environments where they are found. More often than not, these demands outstrip the capacity and systems of older facilities. How do you achieve these highly technical, sealed, and controlled environments in frequently sub-optimal built conditions? •Collaborate with researchers, champions and administrators – their vision guides priorities and their flexibility will lead to opportunities. •I have to move! – how strategically planned & communicated closure/relocation/decanting reduces user anxiety. •Seek out experts – comprehensive and rigorous field testing for energy, vibration and acoustic conditions to be mitigated. •Assess, assess, assess – the constraints and convert the advantages of the existing built fabric. •Ventilation system mapping from source, to zone, to room. •Know your suppliers – align their requirements with researchers’ expectations and what can be achieved. •Highest and Best Use? – what spaces need to be relocated & re-purposed to serve the lab and reduce collateral impact? •Lessons learned and approaches that can be applied to multi-lab conversions at greater scales.

Mark Wronski, Principal, Cumulus Architects Inc. Mark Wronski is a Principal at Cumulus Architects, a two-decade champion of carbon reduction through his experience in the conservation, impact assessment and adaptive reuse of existing buildings, and the conservation of historic landmarks. His considerable expertise contributes to the inclusive design ethos at Cumulus firm and diversifies its capability. He seeks to unlock opportunity with thorough analysis and assessment anchoring a nuanced approach to the mitigation of constraints, achieving integrated and highly resolved design solutions for more technically focused projects such as veterinary clinical & teaching facilities and diagnostic labs.

Paul Szaszkiewicz, Principal and Director, Cumulus Architects Inc. Paul Szaszkiewicz co-founded Cumulus Architects in 2015 with the intent to advance team-based design principles and to evolve a creative culture focused on delivering value to clients. Inclusivity, engagement and participatory design define Paul’s leadership style. His proven track record leading multi-disciplinary design teams is marked by award winning projects recognized for their innovation, design excellence and sustainability.

Stream 3A_ Reduction in Action_ Case Studies in Sustainability for the Next Generation.png

Collaborative Approach to Designing and Constructing Sustainable Laboratory Spaces
A Case Study of the Toronto Research Chemicals, NORR and Allyant/Buttcon Project

Enoch Koo, Toronto Research Chemicals
Frank Panici, NORR
Aaron Styles, Allyant Design & Construction

The objective of this presentation is to share insights and lessons learned from a 200,000 square foot laboratory project by TRC, NORR, and Allyant/Buttcon JV, aiming to inspire future projects that prioritize user needs, operational efficiency, and sustainability.

In the ever-evolving landscape of laboratory design and construction, early collaboration among stakeholders has emerged as a pivotal factor in achieving sustainable and user-centric spaces. This joint presentation, featuring representatives from Toronto Research Chemicals (TRC), NORR Architects, and Allyant Design and Construction, explores the transformative process of facilitating early collaboration with users and facilities, maintenance, and operations teams to enhance the design of laboratory space and exceed end-user expectations through a collaborative Construction Management delivery model. Focusing on the recent development of a state-of-the-art 200,000 square foot laboratory facility designed by NORR and constructed by Allyant/Buttcon JV, this presentation delves into the intricacies of integrating user feedback and operational insights into the design and construction phases. Through a collaborative approach, TRC, NORR, and Allyant/Buttcon JV navigated challenges and capitalized on opportunities to optimize the functionality, efficiency, and sustainability of the laboratory environment. Key topics to be discussed include: 1.Early Stakeholder Engagement: Strategies employed to foster open communication and collaboration among users, facilities, maintenance, and operations teams from project inception. 2.User-Centric Design Principles: Exploration of how user feedback and operational requirements informed architectural and engineering decisions to create adaptable and functional laboratory spaces. 3.Sustainable Solutions Integration: Examination of sustainable design features and construction practices implemented to minimize environmental impact and enhance operational efficiency. 4.Lessons Learned and Best Practices: Reflection on the successes, challenges, and key takeaways from the collaborative process, offering insights for future laboratory design and construction endeavors. Through real-world examples and lessons learned, this presentation aims to inspire industry professionals to adopt a collaborative approach to laboratory design that prioritizes user needs, operational efficiency, and sustainability. Join us as we share our journey of collaboration, innovation, and sustainability in designing the laboratory of the future.

Enoch Koo, COO, Toronto Research Chemicals (LGC Company) Enoch Koo, COO of TRC Chemicals, is an Operations Leader with a focus on continuous improvement. With extensive experience in manufacturing and packaging, he has managed large teams, driven process improvements in high-value streams, and enhanced productivity and quality. A certified LEAN 6-Sigma Black Belt, Enoch excels in change management and global talent development, designing and implementing comprehensive L&D programs. His expertise in process design, technical transfers, and operations excellence has significantly impacted TRC Chemicals, reinforcing its industry leadership and operational success.

frank-panici-linkedin.jpg

Frank Panici, Vice President, NORR Frank Panici has been with NORR for over 25 years, specializing in understanding and advocating for clients' needs in design. He is recognized by major hospital clients and health sciences professionals across Canada for his work on research facilities, education centers, and healthcare facilities. His expertise extends to diverse projects such as the Canadian Blood Services Western Distribution Centre and other significant projects. Frank is committed to advancing NORR's role in the future of hospital and laboratory design, leveraging NORR's global presence and multi-sector capabilities to deliver exceptional results in the health sciences sector.

Aaron Styles, General Manager, Allyant Design & Construction Aaron Styles is the General Manager at Allyant Design & Construction, where he curates exceptional teams to deliver value in science and technology-focused businesses. With a Bachelor of Applied Science in Chemical Engineering from Queen’s University and 20+ years of experience in manufacturing, engineering, and capital projects and operations management, he has led transformational initiatives across various industries. Aaron's experience includes managing engineering, maintenance, and production operations in electric motors, cosmetics, personal care, and pharmaceuticals. He is passionate about innovation and public health improvement through vaccination and disease eradication.

The New St. Paul's Clinical Support and Research Centre

Vincent Goetz, Diamond Schmitt Architects
Kevin Shea, Introba
Curtis Bagan, Providence Heath Care

The objective of the presentation is to demonstrate how by design, a new clinical support and research facility integrates future flexibility, enables collaboration and integrates discovery in a centre of excellence.

The accessibility of the future health campus in the city and the linkage to the hospital and Providence Health Care’s (PHC) world-class researchers will make the Clinical Support and Research Centre (CSRC) a highly impactful building. The CSRC will be the ultimate setting for an ecosystem of innovation and advances in care across PHC’s programs and the Lower Mainland as a whole. Adjacency to the New St. Paul’s Hospital and the CSRC on the Jim Pattison Health Campus becomes an incredibly desirable location and catalyst for scientific, technology, healthcare, bioengineers, and pharmaceutical firms, as well as start-ups to lease space in future developments and nearby buildings. Located in the False Creek Flats area just southeast of downtown Vancouver, BC, the Clinical Support and Research Centre (CSRC) will be a facility that fosters a spirit of innovation while providing support to the functions of the adjacent New St. Paul’s Hospital. The CSRC will host medical professionals, engineers and entrepreneurs working in the adjacent fields of biotechnology, clinical science, pharmaceuticals, and digital health. The building will prioritize vibrant spaces for interaction, alongside high-quality, adaptable areas for research and patient care. This new building will attract talented individuals in diverse fields and provide an integrated facility in which cross-disciplinary adjacencies provide unique opportunities for collaboration. The CSRC’s proximity and relationship with St. Paul’s Hospital will allow those within the facility to accelerate the discovery and trial of novel treatments. As a centre of innovation, the CSRC will constantly adapt and support the use of new technologies and development of the pharmaceutical industry in Western Canada. While being extremely impactful to the development of the Life Science sector in BC, this facility is also striving for excellence in sustainable design. Looking to achieve a Net Zero Carbon ready facility, electrification has been a mandate, requiring new technologies to be used throughout. Supporting this highly sustainable design in a facility that includes medical/clinical floors, office/retail floors, wet lab research floors, a data centre and pre-clinical space, has taken a team effort driven by a client that wants to make an impact. We will take you through all of the above in this presentation, showing how it is clearly supporting the growth of Sciences in Canada.

Le nouveau centre St. Paul de recherche et de soutien clinique

L'objectif de la présentation est de démontrer comment, par sa conception, un nouveau centre de soutien clinique et de recherche intègre la flexibilité future, permet la collaboration et intègre la découverte dans un centre d'excellence.

L'accessibilité du futur campus de la santé dans la ville et le lien avec l'hôpital et les chercheurs de classe mondiale de PHC feront du CRSC un bâtiment à fort impact. Le CRSC sera le cadre idéal pour un écosystème d'innovation et de progrès en matière de soins dans le cadre des programmes du PHC et de la région des basses-terres continentales (Lower Mainland) dans son ensemble. La proximité du nouvel hôpital St. Paul et du CRSC sur le campus de santé Jim Pattison Health devient un lieu incroyablement désirable et un catalyseur pour les entreprises scientifiques, technologiques, de soins de santé, de bio-ingénierie et pharmaceutiques, ainsi que pour les start-ups souhaitant louer des espaces dans les futurs développements et les bâtiments voisins. Situé dans la région de False Creek Flats, juste au sud-est du centre-ville de Vancouver, en Colombie-Britannique, le Centre de Recherche et de Soutien Clinique (CRSC) sera une installation qui favorisera l'esprit d'innovation tout en soutenant les fonctions du nouvel hôpital St. Paul adjacent. Le CRSC accueillera des professionnels de la santé, des ingénieurs et des entrepreneurs travaillant dans les domaines adjacents de la biotechnologie, de la science clinique, des produits pharmaceutiques et de la santé numérique. Le bâtiment privilégiera les espaces dynamiques d'interaction, ainsi que les zones adaptables de haute qualité pour la recherche et les soins aux patients. Ce nouveau bâtiment attirera des personnes talentueuses dans divers domaines et fournira une installation intégrée dans laquelle les adjacences interdisciplinaires offrent des possibilités uniques de collaboration. La proximité du CRSC et sa relation avec l'hôpital St. Paul permettront d'accélérer la découverte et l'essai de nouveaux traitements. En tant que centre d'innovation, le CRSC s'adaptera constamment et soutiendra l'utilisation de nouvelles technologies et le développement de l'industrie pharmaceutique dans l'Ouest Canadien. Tout en ayant un impact considérable sur le développement du secteur des sciences de la vie en Colombie-Britannique, cette installation vise également l'excellence en matière de conception durable. Dans l'optique d'une installation à zéro carbone, l'électrification a été un mandat, ce qui a nécessité l'utilisation de nouvelles technologies. Le soutien de cette conception hautement durable dans une installation qui comprend des étages médicaux/cliniques, des étages de bureaux/commerces, des étages de recherche en laboratoire humide, un centre de données et un espace préclinique, a nécessité un effort d'équipe mené par un client désireux d'avoir un impact. Nous vous présenterons tous ces éléments dans cette présentation, en montrant comment ils soutiennent clairement la croissance des sciences au Canada.

Vincent Goetz.jpg

Vincent Goetz, Senior Associate, Diamond Schmitt Architects Vincent has 22 years of experience with Diamond Schmitt and has contributed his skills and expertise to complex laboratory and healthcare projects, including: Hennick Bridgepoint Active Healthcare & Sinai Long Term Care in Toronto; the Li Ka Shing Knowledge Institute at St. Michael’s Hospital in Toronto; and the Toronto Paramedic Services Multifunction Paramedic Station in Scarborough. A member of the Royal Architectural Institute of Canada, Vincent holds degrees from the University of British Columbia and Ryerson University. He is a certified Passive House Designer and LEED Accredited Professional. Vincent regularly participates in mentoring activities and enjoys continually learning and sharing knowledge about sustainable design as well as innovative building technology. **** Vincent a 22 ans d'expérience chez Diamond Schmitt et a apporté ses compétences et son expertise à des projets complexes de laboratoires et de soins de santé, notamment : Hennick Bridgepoint Active Healthcare & Sinai Long Term Care à Toronto ; le Li Ka Shing Knowledge Institute à l'hôpital St. Michael's à Toronto ; et le Toronto Paramedic Services Multifunction Paramedic Station à Scarborough. Membre de l'Institut royal d'architecture du Canada, Vincent est diplômé de l'Université de la Colombie-Britannique et de l'Université Ryerson. Il est certifié concepteur de maisons passives et professionnel accrédité LEED. Vincent participe régulièrement à des activités de mentorat et aime apprendre et partager continuellement ses connaissances en matière de conception durable et de technologies de construction innovantes.

Kevin Shea.jpg

Kevin Shea, Principal, Introba Kevin brings over 17 years of industry experience to his role as Principal and leads Introba’s Science & Technology Sector. With experience and emphasis in delivering high-performance, sustainable solutions that are practical, maintainable, healthy, resilient and resource-responsible, Kevin’s personal dedication to his projects reflects Introba’s core pillars: imagine, perform, accelerate and sustain. Kevin’s passion for the science and technology sector, and energy efficiency, allow for the design of spaces that meet the needs of each client. Whether it’s a requirement for absolute flexibility, meeting GHG targets, squeezing into a short floor to floor, or any other major requirements that clients find themselves needing, Kevin’s knowledge and ability to listen will drive these projects home to a successful conclusion. **** Kevin apporte plus de 17 ans d'expérience dans l'industrie à son rôle de directeur et dirige le secteur des sciences et technologies d'Introba. Grâce à son expérience et à l'importance qu'il accorde à fournir des solutions durables et performantes qui sont pratiques, durables, saines, résistantes et respectueuses des ressources, l'engagement personnel de Kevin dans ses projets reflète les piliers fondamentaux d'Introba : imaginer, performer, accélérer et soutenir. La passion de Kevin pour le secteur des sciences et des technologies et pour l'efficacité énergétique permet de concevoir des espaces qui répondent aux besoins de chaque client. Qu'il s'agisse d'un besoin de flexibilité absolue, d'atteindre les objectifs de réduction des émissions de gaz à effet de serre, de s'adapter à un espace réduit, ou de toute autre exigence majeure dont les clients ont besoin, les connaissances de Kevin et sa capacité d'écoute conduiront ces projets à une conclusion fructueuse.

Curtis_Bagan.jpg

Curtis Bagan, Director, Major Capital Projects, Providence Heath Care Curtis, Director of Major Capital Projects with Providence Health Care, has 13 years of experience as an owner’s representative and previously as a sustainability consultant spanning multiple sectors including healthcare, higher education, office, retail, hospitality, and infrastructure. Holding a Bachelor of Applied Science in Chemical and Biological Engineering from the University of British Columbia, Curtis has been at the helm of the Clinical Support and Research Centre project for over 5 years since its inception. Despite challenging project constraints, he ensures that Providence's objectives—encompassing accessibility, diversity, flexibility, integration, environmental sustainability, and fiscal responsibility— will be realized and exceeded. **** Directeur des grands projets d'investissement chez Providence Health Care, Curtis a 13 ans d'expérience en tant que représentant du propriétaire et auparavant en tant que consultant en développement durable dans de nombreux secteurs, notamment les soins de santé, l'enseignement supérieur, les bureaux, le commerce de détail, l'hôtellerie et les infrastructures. Titulaire d'une licence de sciences appliquées en génie chimique et biologique de l'Université de la Colombie-Britannique, Curtis est à la tête du projet de centre de soutien clinique et de recherche depuis plus de cinq ans, depuis sa création. Malgré les contraintes du projet, il veille à ce que les objectifs de Providence - qui englobent l'accessibilité, la diversité, la flexibilité, l'intégration, la durabilité environnementale et la responsabilité fiscale - soient atteints et dépassés.

Stream 4A_ Reduction in Action_ Case Studies in Sustainability for the Next Generation.png

A Place for Healing, Learning, and Bringing Community Together
Scarborough Academy of Medicine and Integrated Health – The New Medical School at UofT Scarborough

Nigel Tai, Diamond Schmitt Architects
Oleksandra Onisko, Pratus Group
Jeffrey Miller, University of Toronto Scarborough Campus

The objective of this presentation is to share a case study of a few key sustainable and inclusive design features of the Scarborough Academy of Medicine and Integrated Health: Building Integrated Photovoltaics (BIPV) on site energy generation facade; heat recovery strategy at a welcoming 5-stoery high atrium that public/practitioner/researcher/student can congregate; unique building program that bring Research (science), Practice (healthcare), and Pedagogy (academic) under one roof.

The new Scarborough Academy of Medicine and Integrated Health (SAMIH) combines flexible laboratory spaces, classrooms, and offices for the University of Toronto Scarborough, with functions that bridge the gap between university and the community, such as psychology clinic and pharmacy. SAMIH stands as an important gateway to campus and is the first building you see when entering from the north. Responding to its corner condition, the design places particular attention on communal spaces in order to maximize its effectiveness as a building for learning, research, and public services. Set back from the road, the chamfered western corner of the building creates a welcoming plaza. The ground floor façade is transparent, creating a flow between the public gathering space and the building, inviting people in from all sides. The building is characterized by a dynamic five-storey atrium that forms the “beating heart” of the building and establishes a pedestrian artery that runs through its central axis. The atrium provides unobstructed views to the exterior and allow for natural light to penetrate the interior. It is clad in wood and integrates an abundance of greenery, bring the surrounding ravine inside, creating a continuation of the surrounding landscape indoors that gives users and visitors of the building a sense of well-being. This central space offers collaborative learning environments where teachers, students, health professionals, and faculty can lounge and interact with one another. It is also a key component to enable an efficient air circulation and heat recovery strategy to reduce energy consumption of the building. The design of SAMIH is one that is focused on healing, not only in its role as a place of medical education and research, and its commitment to healing people, but as an architecture that is healing for the environment. Taking advantage of the amount of sunlight the site had to offer, the building is clad in a façade of building integrated photovoltaics (BIPV) panel to soak in the natural energy from the sun and help reduce the burden to our mother Earth. Together with the conventional rooftop PV array, the BIPV system will generate on-site renewable energy that provide 20% of the building overall annual energy consumption. In addition, the structure of the building is based around a 9.6-metre grid that allows for a great degree of flexibility in the layout and services of lab benching and spaces. This serves to extend the building’s lifespan making it more sustainable by allowing the labs to be updated and rearranged with very little material waste. Other sustainable design features include a robust and high-performance building envelope assembly, low window to wall ratio, low-carbon HVAC system with ability to respond to building and occupant needs, and extensive energy recovery. SAMIH is currently under construction and is expected to be completed by summer 2026 to address the needs of the Scarborough neighbourhood.

Un lieu de guérison, d’apprentissage et de rassemblement communautaire
L’Académie de médecine et de santé intégrée de Scarborough – La nouvelle école de médecine de l’Université de Toronto à Scarborough

L'objectif de cette présentation est de partager une étude de cas de quelques caractéristiques clés de conception durables et inclusives de l’Académie de médecine et de santé intégrée de Scarborough: façade de production d'énergie sur site avec panneaux photovoltaïques intégrés au bâtiment (BIPV) ; stratégie de récupération de chaleur dans un atrium accueillant de 5 étages où le public/praticien/chercheur/étudiant peut se rassembler ; programme de construction unique qui réunit la recherche (science), la pratique (soins de santé) et la pédagogie (académique) sous un même toit.

La nouvelle Académie de médecine et de santé intégrée de Scarborough (SAMIH) combine des espaces de laboratoire flexibles, des salles de classe et des bureaux pour l'Université de Toronto Scarborough, avec des fonctions qui comblent l’écart entre l'université et la communauté, telles que la clinique de psychologie et la pharmacie. SAMIH est une porte d'entrée importante du campus et le premier bâtiment que l'on voit en arrivant par le nord. Tout en répondant à son emplacement, la conception accorde une attention particulière aux espaces communs afin de maximiser son efficacité en tant que bâtiment d'apprentissage, de recherche et de services publics. En retrait de la route, le coin ouest chanfreiné du bâtiment crée une place accueillante. La façade du rez-de-chaussée est transparente, créant un flux entre l'espace de rassemblement public et le bâtiment, invitant les gens à entrer de tous les côtés. Le bâtiment est caractérisé par un atrium dynamique de cinq étages qui constitue le « cœur battant » du bâtiment et établit une artère piétonne qui traverse son axe central. L'atrium offre des vues dégagées sur l'extérieur et permet à la lumière naturelle de pénétrer à l'intérieur. Il est revêtu de bois et intègre une abondance de verdure. Le projet amène le ravin environnant à l'intérieur, créant une continuation du paysage environnant à l'intérieur et donnant ainsi aux utilisateurs et aux visiteurs du bâtiment un sentiment de bien-être. Cet espace central offre des environnements d'apprentissage collaboratifs où les enseignants, les étudiants, les professionnels de la santé et les professeurs peuvent se détendre et interagir les uns avec les autres. C'est également un élément clé pour permettre une circulation efficace de l'air et une stratégie de récupération de la chaleur afin de réduire la consommation d'énergie du bâtiment. La conception du SAMIH est axée sur la guérison, non seulement dans son rôle de lieu d'enseignement et de recherche médicale et dans son engagement à guérir les gens, mais aussi en tant qu'architecture curative pour l'environnement. Profitant de l'ensoleillement du site, le bâtiment est recouvert d'une façade de panneaux photovoltaïques intégrés au bâtiment (BIPV) afin d'absorber l'énergie naturelle du soleil et de contribuer à réduire la charge qui pèse sur notre mère la Terre. Avec le système photovoltaïque conventionnel installé sur le toit, le système BIPV produira de l'énergie renouvelable sur le site qui fournira 20 % de la consommation d'énergie annuelle totale du bâtiment. En outre, la structure du bâtiment s'articule autour d'une grille de 9,6 mètres qui permet une grande flexibilité dans l'agencement des espaces de laboratoire et des espaces de services. Cela permet d'allonger la durée de vie du bâtiment et de le rendre plus durable en permettant de moderniser et de réorganiser les laboratoires avec très peu de déchets matériels. Les autres caractéristiques de conception durable comprennent un assemblage d'enveloppe de bâtiment robuste et à haute performance, un faible ratio fenêtre/mur, un système de CVC à faible teneur en carbone capable de répondre aux besoins du bâtiment et des occupants, et une récupération d'énergie importante. SAMIH est actuellement en construction et devrait être achevé d'ici l'été 2026 pour répondre aux besoins du quartier de Scarborough.

Nigel Tai.jpg

Nigel Tai, Principal, Diamond Schmitt Architects Nigel Tai is a Principal with Diamond Schmitt Architects, licensed member of the Ontario Association of Architects, Royal Architectural Institute of Canada, Certified Passive House Designer, LEED AP. With over 22 years of professional experience, he has worked on several firm’s complex lab projects including the LEED Platinum certified CANMET material lab in McMaster Innovation Park, the Wildlife Health Centre at Toronto Zoo, the LEED Gold certified and 2018 Canadian Green Building award winner Environmental Science and Chemistry Building at the University of Toronto Scarborough. He is currently working on two medical education & research facilities: SAMIH & SHN Education Centre.

Oleksandra Onisko.jpg

Oleksandra Onisko, Co-founder, Pratus Group Oleksandra Onisko is a co-founder at Pratus Group with over 14 years of industry experience combining engineering and technical knowledge with a passion for sustainability. Oleksandra leads a team which specializes in detailed building simulation, including parametric energy modelling, for the purpose of design optimization, Net-Zero and Zero Carbon projects, LEED energy modelling, incentive applications, HVAC system comparisons, and early-stage impact analysis of elementary architectural design options. Oleksandra is a Professional Engineer, LEED Accredited Professional (Building Design and Construction) and Building Energy Modelling Professional. She is an active member of the energy modelling and green buildings community in the Greater Toronto area.

Jeff Miller.JPG

Jeffrey Miller, Director of Facilities Management and Capital Projects, University of Toronto Scarborough Campus Jeff Miller is a construction and engineering professional with 25 years of progressive experience who serves as the Director of Facilities Management and Capital Projects at the University and is involved with the construction, renewal and stewardship of UTSC's buildings and grounds. Jeff's education is as a mechanical engineer, and he is passionate about sustainability. He provides leadership and serves on many of U of T's committees on Sustainability and its road to and role in a lower carbon and more environmentally responsible future.

Reduction in Embodied Carbon and Net Zero Achievements at the Sidney Centre for Plant Health

Kevin Humeniuk, Architecture49 Inc.
Antoni Paleshi, WSP Canada
Additional Presenter TBC

The objective of this presentation is to provide the audience with a detailed understanding of the key strategies employed to meet the federal government's sustainability goals for the Sidney Centre for Plant Health, as well as key lessons learned in the scientific laboratory design.

Together, these will present the sustainable design features and current construction status of the Sidney Center for Plant Health project, near Victoria BC. The Sidney facility is Canada's only post-entry quarantine, research and diagnostic facility for imported plant material. The laboratory is responsible for virus testing of all fruit-bearing trees, grapevines and small fruit (e.g., berries), in order to ensure the safe introduction of foreign plant material into Canada. The Sidney Laboratory is being upgraded over the course of this project with a world-class plant health diagnostic and research facility that will provide the Canadian Food Inspection Agency and Agriculture and Agri-Food Canada scientists and partners with state-of-the-art amenities to advance plant science. Project stakeholders have embraced a holistic, sustainable approach to the building environment understanding that every aspect of a facility impacts performance of their staff. This approach optimizes occupant health, morale and productivity in a way that positively impacts science outcomes by encouraging collaboration and facilitated productivity. The project is currently on track to achieve LEED Gold, as well as net zero carbon.

Humeniuk, Kevin - reduced.jpg

Kevin Humeniuk, Principal, S&T Sector Leader, Architecture49 Inc. Kevin is Architecture49's National Sector Leader for Science & Technology. He is a design architect, having obtained his Masters Degree in Architecture from the University of Manitoba in 2000. Kevin is a registered member a variety of provincial architectural associations, as well as the Royal Architectural Institute of Canada. Kevin is also a proud SLCan board member and is a LEED Accredited Professional. Over his twenty-four years in architectural practice Kevin has gained considerable experience in a wide variety of roles and responsibilities. He has been a project manager and design team member responsible for client liaison, functional programming, laboratory planning, and architectural production work on a variety of science projects. For the past fifteen years, Kevin has been exclusively involved in research laboratory projects as a project manager, project architect and laboratory planner. Kevin has presented at various conferences and seminars, including at Tradelines, the RPIC National Workshop, and the Canadian Biosafety Symposium.

Antoni Paleshi.jpg

Antoni Paleshi, Project Director, Climate Change, Resilience and Sustainability, WSP Canada Antoni is a national lead for zero carbon buildings in WSP's Climate Change, Resilience and Sustainability team, with 19 years of experience in the field. Antoni specializes in the design, simulation and evaluation of building efficiency and GHG reduction strategies with experience leading teams towards zero carbon buildings in all sectors. Antoni's on-going laboratory net zero experience includes work with Labs Canada across three sites, three multi-building laboratory projects and a new commercial laboratory project in Vancouver. Antoni is also lead on several decarbonization strategy projects at the portfolio, campus and community-scale for public and private sector clients across Canada.

What Our Members Say

Martin Mihowich LabsCanada.jpg

Marty Mihowich, Laboratories Canada, Public Services and Procurement Canada

Sustainable Labs Canada exemplifies collaboration and innovation, making a lasting positive impact to all science infrastructure within Canada. 
bottom of page